
H2020 FETHPC-1-2014

Enabling Exascale Fluid Dynamics Simulations
Project Number 671571

D1.1 - Internal report on formulation of ExaFLOW

algorithms

WP1: Algorithmic improvements towards exascale

Copyright c© 2015 The ExaFLOW Consortium

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

Ref. Ares(2016)2519384 - 31/05/2016

D1.1: Internal report on formulation of ExaFLOW algorithms 2

DOCUMENT INFORMATION

Deliverable Number D1.1
Deliverable Name Internal report on formulation of ExaFLOW algorithms
Due Date 31/05/2016 (PM 9)
Deliverable lead KTH
Authors David Moxey (IC)

Martin Vymazal (IC)
Nicolas Offermans (KTH)
Adam Peplinski (KTH)
Philipp Schlatter (KTH)
Christian Jacobs (SOTON)
Neil Sandham (SOTON)
Björn Dick (USTUTT)
Jing Zhang (USTUTT)
Uwe Küster (USTUTT)
Patrick Vogler (USTUTT)
Ulrich Rist (USTUTT)
Jan Hesthaven (EPFL)

Responsible Author David Moxey (IC)
e-mail: d.moxey@imperial.ac.uk

Keywords exascale algorithms, scalability, modelling, input/output
WP WP1
Nature R
Dissemination Level PU
Final Version Date 31/05/2016
Reviewed by Niclas Jansson (KTH), Julien Hoessler (McLaren Racing Ltd)
MGT Board Approval 31/05/2016

d.moxey@imperial.ac.uk

D1.1: Internal report on formulation of ExaFLOW algorithms 3

DOCUMENT HISTORY

Partner Date Comment Version
IC 20/04/2016 Initial version with task 1.3 0.1
SOTON 02/05/2016 Add contribution to task 1.2 0.2
KTH 04/05/2016 Add contribution to task 1.1 0.3
USTUTT 05/05/2016 Add contribution to task 1.4 0.4
EPFL 06/05/2016 Add contribution to task 1.5 0.5
KTH/McLaren Racing Ltd 17/05/2016 Corrections 0.6
IC 17/05/2016 Final version 0.07
KTH 31/05/2016 Final version after PMB approval 1.0

D1.1: Internal report on formulation of ExaFLOW algorithms 4

Executive Summary

In this deliverable, we aim to summarise the contributions of the ExaFLOW partners that
form work package 1 across the first nine months of the project. The goals of this report are
to:

• describe our efforts in work package 1 to extend current state-of-the-art methods for
large-scale computational fluid dynamics simulations to meet the needs of exascale
computing;

• summarise the progress of the ExaFLOW consortium members to date in developing
new algorithms to tackle these challenges;

• look ahead to expected developments of these algorithms as the project progresses.

We begin with an outline of the WP1 objectives and how these align with the challenges of
exascale computing. Each of the tasks within WP1 is then described in detail with progress
reports from each of the responsible partners. We conclude this summary with an overview
of progress on each of the tasks:

• Task 1.1 (KTH): The focus of this task is in developing exascale parallel adaptive
methods in terms of polynomial order, element size and moving mesh methods, along-
side developments needed in preconditioners and error estimators that underpins this
activity. The focus of KTH over the initial phase of the project has focused around two
important aspects of this task. Firstly, a prototype spectral error estimator has been
developed which will drive the adaption process, which being local in nature, is highly
scalable in parallel and has been examined in the context of h-adaption for a diffusion
equation. Secondly, a detailed examination of different preconditioning strategies in
large-scale parallel simulations up to 500k computing cores has been performed in the
Nek5000 code. Work is now ongoing to develop a highly parallel algebraic multigrid
(AMG) solver which is required for the solution of the pressure Poisson equation in
flow simulations. This is being coordinated with ICL, who will attempt to evaluate
the use of the KTH AMG developments in the Nektar++ code for unstructured grids.

• Task 1.2 (SOTON): This task aims to leverage a heterogeneous approach to fluid
simulations, whereby different models are used in different regions of the domain de-
pending on the level of detail required, which will reduce the computational effort
required and increase scalability. Progress on this task has been limited to date due
to difficulties and late appointment of staff at the beginning of the project. However,
manpower is now in place to begin work on this effort and we anticipate supplying a
detailed update on progress in the next report.

• Task 1.3 (IC): In this task, IC is developing a new finite element method based
on the concept of a joint formulation between the compact, computationally efficient
but communication-intense continuous Galerkin method (CG) and the communication

D1.1: Internal report on formulation of ExaFLOW algorithms 5

efficient hybridized discontinuous Galerkin (HDG). We aim to use the CG method
to perform intra-node computation with the HDG method used intra-node in order
to provide a highly scalable and computationally efficient method. Progress on this
task has focused around the development of the initial intra-node formulation, which
requires the use of a weak Dirichlet boundary condition to impose communication
between nodes. We are now working towards testing of this method and furthering the
development of the inter-node formulation. In tandem, we are starting to investigate
options for coarse space preconditioning. Initial investigations are being undertaken
with EPFL regarding the use of multi-level preconditioners for the HDG trace space
system.

• Task 1.4 (USTUTT): Input and output (I/O) of data is presently a major bottleneck
in a number of existing large-scale CFD applications, both from the context of I/O
during the simulation and . This issue is expected to become even more pertinent in
the context of even larger scale exascale computations. This task is investigating the
application of data reduction techniques, which retain the key features of the flow whilst
reducing the amount of data that needs to be stored. Progress on this task over the
initial phase of the project has focused around two areas. The first is in investigating
the applicability of common compression algorithms such as JPEG/JPEG-2000 still
image and H.264 motion image compression for fluid simulations. Examination of the
compression ratio, time taken for compression and resulting bitrate error was performed
across four different discrete cosine and discrete wavelet transformation methods. The
second half of progress on this task has investigated the formulation of singular value
and dynamic mode decomposition methods, looking to apply these methods in parallel
to CFD data. Both of these areas have therefore established a good starting point for
further investigation of these data reduction techniques as the project progresses.

• Task 1.5 (EPFL): At exascale levels of computing, it is anticipated that faults arising
from node failure (hard errors) or data corruption (soft errors) can be expected during
the course of an average simulation. The purpose of this task is therefore to design
fault tolerant methods that target the common numerical methods being used in CFD
simulations. Progress on this task has focused around developing an understanding of
how to improve existing algorithms to enhance resilience to both hard and soft errors
hard and soft errors, including investigations of future support for fault detection and
handling through MPI 4.0. Initially this has focused on the investigation of resilience
to parallel-in-time methods, the results of which are available in a preprint [28]. Effort
has been expended on the development and analysis of fault detection and recovery
in complex iterative solvers, with multiple right hand sides. This will serve as a pro-
totype for the development of resilient linear and nonlinear solvers in complex PDE
solvers such as those considered in ExaFLOW. Investigation of sensitivities and critical
resilience in complex PDE solvers is also being considered: e.g., some information such
as geometry information must clearly be safe while others parts of the algorithm such
as the pre-convergence iterates are less critical as they can be regenerated. Having a

D1.1: Internal report on formulation of ExaFLOW algorithms 6

thorough understanding of this is critical to propose an efficient strategy for ensuring
resilience of a large scale production code. Progress is now being undertaken in collab-
oration with ICL after a recent meeting in London to discuss the application of these
techniques to the Nektar++ code, specifically focusing around the conjugate gradient
method that forms a key part of the CFD simulation.

D1.1: Internal report on formulation of ExaFLOW algorithms 7

Contents

1 Introduction 9

2 Task 1.1: Mesh quality and grid adaptivity (KTH) 10
2.1 Objective of this task . 10
2.2 Background . 11

2.2.1 A posteriori local error estimator . 11
2.2.2 Refinement criteria . 14
2.2.3 Refinement techniques . 15
2.2.4 Coarse grid solver . 17

2.3 Summary of progress and outlook . 19

3 Task 1.2: Error control for heterogeneous modelling (SOTON) 20
3.1 Overview . 20
3.2 Progress update . 21
3.3 Outlook and future work . 22

4 Task 1.3: Mixed CG-HDG formulation (IC) 22
4.1 Objective of this task . 23
4.2 Background formulation of the HDG method 24

4.2.1 Local formulation of the HDG method 25
4.2.2 Global formulation . 25
4.2.3 Matrix form . 26
4.2.4 Combined Continuous-Discontinuous Formulation 27

4.3 Continuous-Discontinuous Solver . 27
4.4 Hybrid Formulation for Continuous Galerkin Method 28

4.4.1 Global Equation for Trace Variable 29
4.5 Summary of progress and outlook . 33

5 Task 1.4: Data reduction (USTUTT) 33
5.1 Introduction . 33
5.2 Comparative study on compression techniques 34

5.2.1 Methodology . 34
5.2.2 Compression Algorithms . 35
5.2.3 Results . 36
5.2.4 Summary of progress and outlook . 36

5.3 SVD . 37
5.3.1 Description of the method . 37
5.3.2 Outlook . 38

5.4 Dynamic Mode Decomposition . 39
5.4.1 Analysis . 39
5.4.2 Simplified approach . 43

D1.1: Internal report on formulation of ExaFLOW algorithms 8

5.4.3 Ensembles . 44
5.4.4 Koopman eigenfunctions . 44
5.4.5 How to realize the Koopman related Dynamic Modes approach? . . . 45
5.4.6 Summary . 46

6 Task 1.5: Fault tolerance and resilience (EPFL) 46
6.1 Overview . 46
6.2 Progress update . 47
6.3 Outlook and future work . 50

7 Summary 50

D1.1: Internal report on formulation of ExaFLOW algorithms 9

1 Introduction

Computational fluid dynamics (CFD) is a clear area in which exascale computing can have
significant impact in furthering our understanding of fundamental fluid mechanics problems
that are of key importance to both industry and academia. Exascale computing will allow
researchers to examine these flows at the extremely fine time- and length-scales needed to
accurately model highly turbulent flows at high Reynolds numbers. Presently, this capabil-
ity remains out of reach of current high performance computing platforms. However, the
use of exascale resources should overcome this limitation and allow us to obtain a deeper
understanding of the fundamental behaviour of these fluid flows.

Exascale computing will impose unique challenges and requirements in terms of designing
algorithms that can effectively utilise the expected heterogeneous nature of these machines.
These algorithms need to not only be massively parallel, but be capable of exploiting a
combination of many-core architectures, vector units, and accelerators. Additionally, input
and output (I/O), already a bottleneck in current systems, will likely become an even larger
problem in exascale machines. Finally, the likely size of these machines means that there
is a very high probability of machine failure during a typical length simulation. Algorithms
for resilience and fault-tolerance are therefore required in order to detect and adapt around
these failures.

Developing new methods to overcome these challenges and forms the key objectives of
the ExaFLOW project. Specifically, the work being undertaken in this work package is
designed to overcome these key algorithmic bottlenecks that need to be addressed before
CFD simulations can be undertaken at exascale-level computing platforms. This work is
split across five tasks, each of which is lead by one of the five work package partners:

• Task 1.1: Mesh quality and grid adaptivity (KTH)
This task focuses on the challenge of developing scalable adaptive methods, where error
estimators drive an adaption process in order to make highly efficient use of large-scale
computational resources without a priori knowledge of the flow solution.

• Task 1.2: Error control for heterogeneous modelling (SOTON)
Will investigate the application of heterogeneous modelling to exascale, so that differ-
ent regions of the flow may be modelled with different approaches, thereby reducing
computational cost and increase scalability. In particular, it will address the challenges
that arise when considering the interfaces between two modelling zones, as well as en-
suring that the distribution of work across nodes is regulated according to the variation
of flow scales.

• Task 1.3: Mixed CG-HDG formulation (IC)
This task will investigate how to improve the scalability of state-of-the-art spectral
element methods and make them suitable for exascale computations by developing a
new mixed CG-HDG system, where each node performs a computationally efficient
CG solve, and combines this with a HDG system between nodes to minimize commu-
nication costs.

D1.1: Internal report on formulation of ExaFLOW algorithms 10

• Task 1.4: Data reduction (USTUTT)
The aim of this task is to reduce the amount of data that must be transferred from
memory to disks by using filters for structure extraction and data reduction, i.e. trans-
forming the large “raw” data to feature- or structure-based data which are orders of
magnitude more compact.

• Task 1.5: Fault tolerance and resilience (EPFL)
This focuses on the development of fault tolerant algorithms to ensure resilience to
hardware faults. Activities will address the development of suitable in-situ models and
strategies for detection of hardware faults. This will include both the development of
suitable error detectors (in collaboration with Task 1.1) and efficient data reduction
and model building, partly in collaboration with Task 1.4.

In the following sections, we will outline the importance of each task for the exascale
challenge, report the progress undertaken in each task and give an outlook as to how we
expect work to progress over the course of the project. Where specific subtasks are noted
(e.g. task 1.2.1), we refer the reader to ANNEX 1 of the ExaFLOW project for detailed
information for each subtask.

2 Task 1.1: Mesh quality and grid adaptivity (KTH)

2.1 Objective of this task

Realistic flow problems involving turbulence quickly require large-scale simulation capabili-
ties. The most crucial aspect in these situations is the proper representation of small-scale
flow structures in time-dependent transport problems. This must be accomplished with min-
imal dissipation, as errors accumulated at small scales may become dominant when propa-
gated through large computational domains over long integration times, and with minimal
cost. Flexibility in mesh topology is instrumental, as simulation accuracy depends strongly
on the quality of the mesh, which in turn must be adjusted to the (a priori unknown) flow.
This is why mesh generation is considered to be a significant bottleneck in modern and fu-
ture CFD. As more powerful HPC resources enable the simulation of complex, more realistic
and industrially relevant flow problems, reliable mesh generation becomes more problematic,
resulting in significant uncertainties in the simulation result. Although numerical uncertain-
ties arise from many sources, including errors due to spatial and temporal discretisations or
incomplete convergence, they can be minimised during the simulation by appropriate adap-
tation of the grid structure to the dynamic flow solution. Such automated mesh adaptivity,
combining error estimation with dynamical refinement, is considered an essential feature for
large-scale, computationally expensive simulations. It considerably improves the efficient use
of resources, simplifies the grid generation and ensures a consistent accuracy (depending on
the chosen measure) of the solution. The objectives of this task can be divided into:

• finding an effective criterion for refinement;

D1.1: Internal report on formulation of ExaFLOW algorithms 11

• and implementing a mesh refinement method.

The regions of the mesh where refinement is relevant can be located by the combination
of local spectral error estimators and the resolution of an adjoint problem that establishes the
accumulation of errors in space and time. Therefore, the first objective is the development
of a criterion for refinement based on these two approaches.

The implementation of a tool for grid adaptivity will also be investigated. Specifically,
refinement techniques (like the r, h and p-refinement methods) need to be provided. This
can be achieved only by addressing the several issues raised by these methods. First, a
parallel algebraic multigrid solver that will serve as a preconditioner for the resolution of
the pressure equation has to be implemented. Presently, a serial implementation of this
preconditioner exists, but since a modification of the mesh during the adaptation process
implies a modification in the preconditioner, this needs to be taken care of in the most efficient
way possible. Then, it is required to elaborate a parallel and dynamical grid partitioner
to ensure proper load balancing between the computing nodes. This will ensure that the
workload remains constant over the processes after the number of elements or polynomial
order has been locally increased (or decreased).

2.2 Background

2.2.1 A posteriori local error estimator

Errors resulting from the discretization and resolution of a system of partial differential
equations arise from four different sources. Modeling error occurs when the mathematical
model for the equations does not match reality. This kind of error can not be handled by
the code and we assume that the model is consistent with the actual physics that each user
wants to simulate. Then, roundoff error is due to the finite accuracy of computers. This kind
of error is also ignored as we once again assume that numerical parameters have been chosen
properly (by using double precision floating point arithmetic for example). Truncation error
arises because the solution is approximated by a finite spectral expansion. We will mostly
focus on this source of error, which can be estimated by different methods and reduced
by adaptive mesh refinement. Finally, there is quadrature error because of the discrete
integration, which can also be estimated.

Truncation error. The local error on a spectral element can be estimated by extrapolating
the decay of the spectral coefficients as shown in [25, 24]. If we consider u(x), the exact
solution of a 1D partial differential equation, then its spectral transform is

u(x) =
∞∑
k=0

ûk pk(x), (1)

D1.1: Internal report on formulation of ExaFLOW algorithms 12

where ûk are the spectral coefficients and pk a family of orthogonal polynomials (k denotes
the polynomial order). The spectral coefficients are given by

ûk =
1

γk

∫ 1

−1

w(x)u(x)pk(x)dx, (2)

where w is a weight associated to the family of polynomials and γk = ‖pk‖2
L2
w
.

The corresponding discrete expansion is truncated to order N by the truncation operator
PN as

PNu(x) =
N∑
k=0

ûk pk(x). (3)

Consequently, the truncation error can be written as the L2
w-norm of u−PNu. If we assume

Legendre polynomials, w = 1 and the estimate for the truncation error εt becomes

εt = ‖u− PNu‖L2
w

=

(∫ 1

−1

w(x)

[
∞∑
k=0

ûk pk(x)−
N∑
k=0

ûk pk(x)

]2

dx

) 1
2

=

(∫ 1

−1

∞∑
k=N+1

û2
k p

2
k(x)

) 1
2

=

(
∞∑

k=N+1

û2
k

2k+1
2

) 1
2

. (4)

However, the coefficients ûk are unknown for k > N and need to be approximated. This
is achieved by interpolating a linear least-squares approximation of log(ûk) with respect to
k for k ≤ N and then extrapolating the coefficients for k > N . In practice, this is done by
finding the best parameters c and σ such that

ûk ≈ c exp(σk). (5)

This interpolation gives valuable information about the decay rate σ of the coefficients, which
is a good indication for convergence and can be used to decide which refinement method to
choose. If the solution is smooth and decay is monotonic, this estimator performs well. In
[37], it is suggested to shift the linear least-squares interpolation upwards so that no spectral
coefficient lies above it.

Quadrature error. In [25], Mavriplis also estimates the quadrature error that needs to
be added to the truncation error. We denote by ūk the discrete version of the continuous
coefficients from equation (2). They are evaluated as

ūk =
1

γk

N∑
i=0

ρiu(ξi)pk(ξi), (6)

D1.1: Internal report on formulation of ExaFLOW algorithms 13

where ξi are the Gaussian quadrature points and ρi are the associated quadrature weights.
We let INu be the Lagrange polynomial interpolation of u

INu(x) =
N∑
k=0

ūk pk(x). (7)

Therefore, the quadrature error εq is is given by

εq = ‖INu− PNu‖L2
w

=

(
N∑
k=0

(ūk − ûk)2

2k+1
2

) 1
2

. (8)

Arguing that the spectral coefficients are obtained exactly for k ≤ N − 1, the quadrature
error can be reduced to

εq =

(
(ūN − ûN)2

2N+1
2

) 1
2

. (9)

In practice, we compute

εq ≈

(
ū2
N

2N+1
2

) 1
2

, (10)

which is a safe over-estimate of the actual error.

Alternative error estimate. In [37], Willyard suggests to use a simpler error estimate.
If exponential decay is strong enough, the tuncation error εt can be estimated by

εt ≈ ūN . (11)

This solution is much cheaper to compute than (4) but is also supposedly less accurate.

Constrained Legendre coefficients error estimator. Another way of estimating the
error developed in [37] is by comparing the solution INu with polynomial orderN and another
estimated with fewer degrees of freedom IN−Mu. The solution IN−Mu is not computed by
solving the problem a second time but is obtained by truncating the spectral series of INu.
We denote the spectral coefficients of IN−Mu by ũk such that its spectral transform is

IN−Mu =
N−M∑
k=0

ũk pk(x). (12)

For k = 0, ..., N −M − 2, we take the same coefficients as for INu but the last two Legendre
coefficients are chosen such that continuity is enforced at the boundary of the reference

D1.1: Internal report on formulation of ExaFLOW algorithms 14

element. This leads to the system

ũk = ūk, k = 0, ..., N −M − 2 (13)

IN−Mu(−1) =
N−M∑
k=0

ũk pk(−1) =
N−M∑
k=0

ũk (−1)k = INu(−1) (14)

IN−Mu(1) =
N−M∑
k=0

ũk pk(1) =
N−M∑
k=0

ũk 1k = INu(1). (15)

This constitutes a second estimate of the local truncation error on a coarser mesh with
polynomial order N −M

εt = ‖INu− IN−Mu‖L2
w

=

(
N−M∑

k=N−M−1

(ūk − ũk)2

2k+1
2

+
N∑

k=N−M+1

ū2
k

2k+1
2

) 1
2

. (16)

This method follows the idea of the τ -criterion for finite differences and finite volumes meth-
ods [6].

2.2.2 Refinement criteria

The knowledge of local error estimates is valuable data but it does not provide direct infor-
mation on where to refine the mesh. In this section, we present different techniques to locate
the best spots where to perform refinement. These methods are either driven by simplicity,
like the local approach, or by the minimization of an objective function that would ensure
an optimal refinement in some sense.

Local approach. The local approach consists of refining an element of the grid solely based
on the knowledge of the local error estimate presented in the previous section. This method
is applied by Mavriplis [25, 26] for example. The choice between the p- or h-refinement
methods is based on the strength of the decay of the spectral coefficients. While this method
does effectively reduce the global error, it is far from being optimal as we miss the influence
of a local error to the global one and because the method does not account for the error
accumulation in time.

Goal-oriented approach. Rather than decreasing the global error itself, the goal-oriented
approach tries to minimize a global output of physical interest (typically stresses, mean
fluxes, drag or lift coefficients...) by solving the adjoint equation for the output. One of the
first work exploring this approach is [31] (based on ideas developed for design optimization
[16]).

We explain the basic concept of the method very briefly for the case of the discrete
adjoint-equation. Assume that we want to estimate the value of an integral quantity f(U),
where U is the solution of the system of partial differential equations R(U) = 0. Consider

D1.1: Internal report on formulation of ExaFLOW algorithms 15

a coarse mesh ΩH and a fine mesh Ωh, where H and h < H represent typical dimensions of
the elements and assume that only the coarse mesh ΩH actually exists. One would like to
estimate the value of fh(Uh) on the hypothetical fine mesh Ωh while knowing only the coarse
solution UH . This estimated can be computed as

fh(Uh) ≈ fh(I
H
h UH)− (LHh ΨH)TRh(I

H
h UH), (17)

where IHh is a prolongation operator that maps coarse mesh solution onto the fine mesh, ΨH

represents the adjoint solution on the coarse mesh and LHh is a prologation operator which
expresses the coarse mesh adjoint on the fine mesh. The adjoint solution ΨH is obtained by
solving the discrete adjoint equations on the coarse grid[

∂RH

∂UH

]T
ΨH =

(
fH
UH

)T
. (18)

The method has been implemented and tested for 2D inviscid incompressible flows in
[2, 8] and for the 1D viscous Burger equation in [30]. Continuous adjoint-equation applied to
the compressible Euler equations is found in [39]. Automatic mesh adapation for the spectral
difference method is developed in [20], where the differences between continuous and discrete
adjoint methods are also discussed. An entropy based approach is developed in [15, 14]
and applied to the compressible Navier-Stokes equations. This technique makes use of the
symmetrization properties of the entropy functions and entropy variables that automatically
satisfy an adjoint equation. This saves the cost of solving the adjoint equations and provides
a cheap error indicator for mesh adaptation.

Sensitivity to refinement with respect to global error. In [37], Willyard presents an
adjoint based error estimate to find the contribution of the local error at every time step to
the global error at the final time, for the case of a bilinear operator. The concepts behind
the method are based on those presented in [13], where the authors devised an adaptive
method, also for nonlinear systems of partial differential equations, in the framework of the
finite element method.

2.2.3 Refinement techniques

Once the location where refinement is required has been identified, several refinement tech-
niques are available. One can either adjust the relative sizes of some elements (r-refinement),
increase the number of elements (h-refinement) or increase locally the polynomial order (p-
refinement).

r-refinement. The r-refinement technique consists of moving the inner nodes of the mesh
in order to refine poorly resolved regions. This method offers an advantage in that it does
not modify the topology of the mesh. However, while it seems an easy way to proceed, the
practical implementation of an efficient algorithm for r-refinement is a complex task. In [38],
an algorithm based on a classical steepest-descent method is proposed for the finite element

D1.1: Internal report on formulation of ExaFLOW algorithms 16

method using planar B-spline surface. In [27], the nodes are moved toward a center of mass
depending on the estimated truncation error. In [9], the spring analogy is used to move the
nodes in the case of the finit volume method. The idea is explained as follows in the paper:

In the spring analogy, edges of the mesh are treated as springs and the mesh is a web of
springs. The error information is associated to each “spring” in the web via averaging of the
element-based error indicator, and a force (via Hooke’s law) is created by relating the error
indicator to the spring equilibrium length, through a prescribed scaling.

h-refinement. The h-refinement method consists of refining the mesh locally by dividing
some of the elements into smaller ones. The effect of this method is the apparition of hanging
nodes at the interface that need to be taken care of. One of the solutions to solve this issue
is to use mortar elements. The idea behind this method is that the facets of each element
do not communicate directly. Instead they communicate with and intermediate element,
called a mortar element, where a common flux is computed. Then, this flux is mapped back
to the faces of the elements connected to the mortar element. This technique is used for
the spectral differences in [20]. Similarly, non-conforming refinement using mortar elements
for the spectral element method is presented in [22], where the direct stiffness procedure is
extended to nonconforming elements via a mortar basis.

A second method for performing h-refinement is by interpolating the solution between the
interfaces as in [19]. This method also extends the direct stiffness procedure by interpolating
the solution at the Gauss-Lobatto-Legendre points at the interface.

p-refinement. In [12], the authors apply the goal oriented approach and the continuous
adjoint formulation to the high-order discontinuous Galerkin method and increase locally the
polynomial order. They ensure the continuity of the fluxes between two adjacent elements
having different polynomial order by projecting the spectral coefficient from the high-order
interface to an orthogonal basis, so as to remove high order frequencies. This can be done
because the coefficients in orthogonal space are not coupled and average solution is not
modified.

The p-refinement method is also presented for spectral differences using mortar elements
in [20]. The procedure is very similar to the one followed for h-refinement.

h or p-refinement? When refining, one will proably wonder about the choice between
h or p-refinement and some criterion is required in order to choose the right method. h-
refinement induces a modification of the topology, an increase in the elements count but is
better suited for flow discontinuities. p-refinement does not modify the mesh but induces
load imbalance between the elements.

In [26], the choice is based on the decay rate of the spectral coefficients (following the
developments from section 2.2.1). It is argued that if σ < 1, where σ is defined as in
equation (5), h-refinement should be favored while p-refinement is preferred if σ > 1.

In [20], it is suggested to apply h-refinement around flow discontinuities and p-refinement
when the flow is smooth, via the use of a discontinuity sensor.

D1.1: Internal report on formulation of ExaFLOW algorithms 17

2.2.4 Coarse grid solver

When solving the Navier-Stokes equations, the resolution of the pressure equation is a chal-
lenging task as it constitutes the main source of numerical stiffness. Nek5000 [1], a CFD code
based on the spectral element method, tackles this issue by using an optimal preconditioner
for the pressure equation. Part of this preconditioner requires the resolution of an algebraic
system on the coarse mesh, made of the vertices of the spectral elements only. This coarse
grid problem can be solved by two different methods: a first one called XXT [35] or a second
one called algebraic multigrid (AMG) [21]. We briefly present both methods in this section
before comparing their performances.

Algebraic multigrid solver (AMG). The convergence rate of iterative solvers usually
stalls after a certain number of iterations because of the slow decay of low frequency errors.
In order to tackle this issue, multigrid methods have been developed where a correction
is computed on a coarser grid, where convergence rate is faster for low frequencies. This
technique is applied recursively until the lowest frequencies have converged. The multigrid
method implemented in Nek5000 is an algebraic multigrid (AMG). This method is suppos-
edly better suited than XXT for simulations with a high count of elements and processes.
However, it requires a setup step, which is currently performed by a serial Matlab code. This
bottleneck makes AMG an unsuitable candidate to use with an adpative grid tool. There-
fore, the parallelization of the setup phase needs to be implemented and we now investigate
the basic concepts behind the AMG setup, which has been developed by James Lottes at
the Argonne National Laboratory. The very basic explanations presented here focus only on
the main ideas behind the setup while all the mathematical details can be found in [21].

As a starting point, assume that we want to use the AMG method to solve iteratively
the linear system

Ax = b, (19)

where A is a large, symmetric positive-definite n × n matrix. In our case, n represents the
number of discrete nodes. The algorithm for the setup is decomposed into three steps: a
coarsening phase divides the gridpoints in two levels (coarse and fine points), an interpolation
step links the solution on the two levels and a smoothing operator is built on the fine level.
These three steps are repeated recursively until the coarse mesh is composed of a very low
number of gridpoints.

First, coarsening consists in selecting a subset of nodes to form a coarser mesh. If we
denote by a subscript c these nodes at the coarser level and by a subscript f the nodes that
remain at the original level, the matrix A can be decomposed as

A =

[
Aff Afc
Acf Acc

]
, (20)

where we have assumed that the coarse variables are ordered last. For example, a possible
coarsening of a 5 × 5 square domain (n = 25) at the first step of the algorithm is shown in
Figure 1. Here, the number of c nodes nc is 4 and the number of f nodes nf is 21.

D1.1: Internal report on formulation of ExaFLOW algorithms 18

Figure 1: Coarsening of a 5 × 5 square domain (n = 25): f nodes are red and c nodes are
green.

Secondly, it is necessary to define an interpolation operator W , having dimensions nf×nc
and containing the interpolation weights, to go from the solution on one level to the other.
If we denote by vectors xc of dimension nc and xf of dimension nf the solutions on c and f
nodes respectively, then the original solution x is determined by the interpolation matrix

P =

[
W
I,

]
(21)

where I is an identity matrix of dimensions nc × nc, such that the original solution is ap-
proximated from the coarse solution by

x =

[
xf
xc

]
≈ Pxc =

[
Wxc
Ixc

]
. (22)

The construction of W is decomposed into the computation of the interpolation support and
of the numerical weights. We notice that a larger interpolation support provides a better
approximation but also a fuller operator W and consequently an increase in communication
and computation when it comes to solve the AMG. Therefore, the algorithm is optimized to
provide a good trade-off between accuracy and efficiency.

Finally, the last step consists in building a smoother B, which is an operator that will
smooth high frequency errors. In practice, B takes the form

B =

[
Bff

0

]
, (23)

where Bff is a suitable preconditioner for Aff . In our case, a parameter-free diagonal sparse
approximate inverse (SPAI-0) is chosen.

XXT. The coarse grid solver denoted XXT is based on the Cholesky factorization of the
matrix A−1 into XXT with a convenient refactoring of the underlying matrix to maximize

D1.1: Internal report on formulation of ExaFLOW algorithms 19

the sparsity pattern of XT . The basic idea behind XXT is to build a sparse basis X such
that XXT ≈ A−1. The first step for building the basis is to find a set of k1 unit vector that
are A-conjugate. A vector xk is A-conjugate if it satisfies

xTkAxk = δij, (24)

where δij is the Kronecker operator and A has size n × n. Then, if we denote by Xk−1 =
(x1x2...xk−1) the n × (k − 1) matrix at iteration k and by V = (v1v2...vn) an appropriate
column permutation of the identity matrix, the procedure to compute xk is given by

do k = 1, ..., n :

w := vk −Xk−1X
T
k−1Avk

xk := w/‖w‖A
Xk := (Xk−1xk)

enddo.

The algorithm is optimized in order to find an ordering for V that minimizes the fill for X.
More details regarding complexity and implementation are available in [35].

2.3 Summary of progress and outlook

The implementation of error estimators based on the spectral discretization wihtin each
element (task 1.1.2.a) has been achieved following the developments presented in section
2.2.1 within Nek5000. This tool has already been successfully applied to simple 2D cases.

The implementation within Nek5000 of the h-refinement technique as part of task 1.1.3.a
has been done for the heat equation.

In the future, a new and optimal algorithm for a refinement criterion based on the adjoint
method will be devised. This method will minimize a given objective function such as a
physical quantity or global error (task 1.1.2.b). The extension of the h-refinement technique
to the full Navier-Stokes will be implemented (task 1.1.3.a). Finally, we will enable the
use of different polynomial orders among the elements within Nek5000. From then on, the
p-refinement technique will be implemented (task 1.1.3.b).

In order to compare the two grid solvers, XXT and AMG, we have performed scaling tests
with the intention to validate the better performance of AMG over XXT. Details of the test
cases, computers used and scaling results can be found in [29]. In this paper, we perform a
strong scaling analysis on three parallel machines with different performance characteristics
and interconnect networks, namely Mira (IBM Blue Gene/Q), Beskow (Cray XC40) and
Titan (Cray XK7). The test cases considered for the simulations correspond to a turbulent
flow in a straight pipe at four different friction Reynolds numbers Reτ = 180, 360, 550 and
1000. For each case on each computer, we measure the computation and communication
times over a large range of compute cores. The strong scaling limit is attained for roughly
5000− 10, 000 degrees of freedom per core on Mira, 30, 000− 50, 000 on Beskow, with only a
small impact of the problem size for both machines, and ranges between 10, 000 and 220, 000

D1.1: Internal report on formulation of ExaFLOW algorithms 20

512 1024 2048 4096 8192 16384

10
0

10
1

T
im

e
 (

se
c
o
n
d
s)

No. nodes (MPI ranks/32)

(a) Mira

32 64 128 256 512 1024

10
1

10
2

T
im

e
 (

se
c
o
n
d
s)

No. nodes (MPI ranks/32)

(b) Beskow

Figure 2: Total mean time for 20 timesteps: AMG (blue), XXT (red), communication
(dashed), computation (solid), total time (�), computational linear scaling (green).

depending on the problem size on Titan. In particular, we also study the effect of the
two coarse grid solvers XXT and AMG on the computational time. If we investigate the
communication requirements for both solvers, profiling tools have shown that AMG requires
the exchanges of more shorter messages while XXT requires fewer but longer messages. In
practice however, results show that AMG can lead to a decrease of up to 10% in the total for
a high number of elements on a high number of processes. For example, we show in figure 2
the scaling plots for the case Reτ = 550 on Mira and Beskow.

As we can see, AMG outperforms XXT when the number of cores is high. Overall,
AMG should be preferred and this constitutes our main motivation for the development of a
parallel version of the setup phase. This task has been started and is still ongoing as part of
task 1.1.1.b. The algebraic multigrid setup is decomposed into a coarsening, smoothing and
interpolation steps. The first two steps are already parallelized for Nek5000 and efforts are
expended on the latter one. The parallel version of this setup phase will enable the rapid
update of the coarse grid solver after the adaptation process.

3 Task 1.2: Error control for heterogeneous modelling

(SOTON)

3.1 Overview

Heterogeneous modelling, in which the flow within complex geometries is modelled using
different techniques depending on the flow complexity and level of detail required, offers a
viable and computationally efficient method for large-scale flow simulations and enables nu-
merical modellers to make the most out of available exascale-capable computing resources.
Task 1.2 focuses on addressing the issues arising from extending heterogeneous modelling

D1.1: Internal report on formulation of ExaFLOW algorithms 21

to exascale, and in particular the challenges that arise when considering the interfaces be-
tween two modelling zones, as well as ensuring that the distribution of work across nodes is
regulated according to the variation of flow scales.

The work will be based around the SBLI code, developed at the University of Southamp-
ton, and the task is split into four components:

• Task 1.2.1: Error estimation for Finite Difference (FD) codes based on spectral res-
olution: using small-domain Fourier transforms to form error estimates and following
r-refinement strategy.

• Task 1.2.2: Dynamic grid modification and load balancing for FD codes: including
operation in heterogeneous environment.

• Task 1.2.3: Zone interface treatment including modules for generation of turbulence
for a wide variety of conditions, combining synthetic eddy modelling with digital filtered
white noise approaches. Extension to previous approaches are needed to model acoustic
disturbances as well as thermal (entropy) terms. The latter cannot be based on the
Reynolds analogy which does not apply to the instantaneous flowfield.

• Task 1.2.4: Efficient parallel framework for multi-scale approach, taken to very large
scale: In particular the load balancing problem of LES with millions of degrees of
freedom, automating the parallelism required for the LES and dealing with simulations
where the direct numerical simulations can have different sizes. An additional physical
problem at high Reynolds number is the possible need for three layers of simulations
to cover the physics of turbulent flow at high Reynolds number. To cater for this
the multi-scale approach needs to be generalized for an arbitrary number of tiers of
simulations.

3.2 Progress update

Progress on this task during the initial phases of this project has been limited due to a lack
of staffing until late. However a new postdoctoral researcher, Christian Jacobs, is now in
place (as of 1st February 2016) to start working on this task. Under the general theme of
WP1 (i.e. algorithmic improvements), most of the progress to date has been spent replacing
the core of the Fortran-based SBLI code with a Python-based code generator. Essentially,
this allows users to write the equations they wish to solve as high-level expressions, and
the code that performs the finite difference approximations is generated automatically. We
anticipate that this will help to future-proof the code as new exascale-capable architectures
become available. It also introduces a separation of concerns between domain specialists,
numerical modellers, and HPC experts, allowing better maintainability and extendibility of
the codebase which will be important when trying out various approaches to heterogeneous
modelling and error control.

D1.1: Internal report on formulation of ExaFLOW algorithms 22

3.3 Outlook and future work

Our next steps will be to look into developing and evaluating algorithms in SBLI with respect
to the computational and energy savings brought about by storing derivatives in memory vs.
recomputing them on the device: testing will take place on CPUs, GPUs, and Intel Xeon
Phi cards. Code generation allows us to easily switch between these different architectures.
This is expected to take place within the next 3-6 months. On the heterogeneous modelling
front, a literature review is currently being performed of existing approaches. After this,
we will start to investigate/evaluate techniques and extend an existing incompressible code
to perform multiple small quasi-direct Navier Stokes (QDNS) simulatinos within a single
large eddy simulation (LES), with two-way feedback. This is expected to start in the next
6 months. Finally, we aim to extend the incompressible LES/QDNS code to run a realistic
case of compressible air flow past an aerofoil. This is expected to start after the next 12
months.

4 Task 1.3: Mixed CG-HDG formulation (IC)

One of the main challenges facing exascale computing is the communication costs that will
be incurred between computing nodes at such large scales. Communication topologies will be
inherently heterogeneous, leading to algorithms that must capitalise on both the intra-node
communication between cores on each local system, and inter-node communication between
systems. Exascale systems will therefore require hierarchical parallelization strategies, es-
sentially differentiating between intra- and inter-node parallelism. Achieving good efficiency
on both levels while exploiting existing algorithms is a significant challenge and a barrier to
the ambition of using CFD codes on exascale computing platforms.

The purpose of this task is to address this need for hierarchical parallelization by consid-
ering a combination of two methods: one that is compact and can exploit intra-node data
structures, and one that is more disjoint with simpler communication patterns to enable
higher efficiency of strong scalability as the number of compute nodes is increased. The first
is a popular method, known as the continuous Galerkin (CG) finite element method, which
is well-established and widely used within the computational fluid dynamics community. In
the CG method, a domain Ω is split into a mesh of simple elemental shapes such as triangles
and tetrahedra, on which an approximate solution to the Navier-Stokes equations can be
more readily obtained. These elements are then connected to construct the domain and
give an approximate solution to the fluid along intersecting vertices, edges and faces of the
elements.

Although the CG method is well-suited for incompressible fluid simulations and is known
to be computationally efficient, as the underlying representation on the mesh is compact, the
connection between elements is strong in that, wherever elements connect – either through
faces, edges, or vertices – communication must occur if these elements lie on different pro-
cesses. This is a significant challenge, since for the complex geometries, such as Formula 1
cars and aircraft configurations that industry is increasing demanding and exascale comput-

D1.1: Internal report on formulation of ExaFLOW algorithms 23

ing can provide, meshes are unstructured, meaning that in complex areas, many tetrahedral
elements can intersect at a single vertex, vastly increasing communication overheads.

More recently, discontinuous Galerkin (DG) methods and their hybridized (HDG) vari-
ants for elliptic problems are now gaining traction within the CFD community. The coupling
between elements in this setting is far weaker, since they are only connected through faces,
with information being transferred between elements via flux terms. From the perspective
of exascale computing, this is ideal, since even if a large number of elements are connected
through their vertices, the use of faces makes all communication element pairwise. How-
ever, this reduction in communication comes at a far higher computational cost, since DG
methods typically require far more degrees of freedom to represent the problem.

4.1 Objective of this task

The objective of this task is to create a new method that adopts the best of both of these
methods. We will use the CG method on a single node to make best use of the compact
and efficient nature of this method. Between nodes we will use the HDG method to improve
communication between nodes. The use of both of these methods should therefore lead to
an efficient, scalable method, which is capable of realising the potential of exascale-level
computing hardware.

The figure above gives an overview of the method in two dimensions. On the left, we can
see the domain Ω split into 69 triangles. This left-hand figure essentially represents the CG
problem on a single node. Our proposed method is depicted on the right, where four nodes
are used to split the domain across the interior red lines and boundary conditions imposed
weakly on the exterior red lines, with HDG being used to couple nodes together.

The rest of this section outlines the progress on this task to date. We outline our initial
efforts in the formulation in a number of subsections:

• Background formulation of the HDG method;

• Overview of the CG-HDG principle;

D1.1: Internal report on formulation of ExaFLOW algorithms 24

• A hybrid formulation of the CG method;

• Summary of progress;

• An outlook for the rest of the course of the project.

4.2 Background formulation of the HDG method

This section is largely based on paper [17], and therefore not all notation is defined in this
section. We therefore refer the reader to this article for further clarification, where we note
that matrices in this article are typeset in bold face (e.g. A) as opposed to blackboard
font (A). We assume that our problem is posed on a domain Ω, and seek the solution of the
following prototype elliptic Helmholtz problem with Dirichlet (∂ΩD) and Neumann (∂ΩN)
boundary conditions:

−∇2u(x) = f(x) x ∈ Ω, (25)

u(x) = gD(x) x ∈ ∂ΩD, (26)

n · ∇u(x) = gN(x) x ∈ ∂ΩN , (27)

where ∂ΩD

⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. To formulate the DG method, we consider

a mixed form of (25) by introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (28)

q = ∇u(x) x ∈ Ω, (29)

u(x) = gD(x) x ∈ ∂ΩD, (30)

q · n = gN(x) x ∈ ∂ΩN . (31)

The DG methods seeks an approximation pair (uDG, qDG) to u and q, respectively, in the
space Vh ×Σh. The solution is required to satisfy the weak form of (28) and (29)∑

Ωe∈Th

∫
Ωe

(
∇v · qDG

)
dx−

∑
Ωe∈Th

∫
∂Ωe

v(ne · q̃DG) ds =
∑

Ωe∈Th

∫
Ωe
v f dx (32)

∑
Ωe∈Th

∫
Ωe

(w · qDG) dx = −
∑

Ωe∈Th

∫
Ωe

(∇ ·w)uDG dx +
∑

Ωe∈Th

∫
∂Ωe

(w · ne)ũDG ds, (33)

for all (v,w) ∈ Vh(Ω)×Σh(Ω), where the numerical traces ũDG and q̃DG have to be suitably
defined in terms of the approximate solution (uDG, qDG).

In order to have suitable numerical properties, the numerical traces must have the form

ũ =

(
1

2
−C21 · n+

)
u+ +

(
1

2
−C21 · n−

)
u− − C22(q+ · n+ + q− · n−)

q̃ =

(
1

2
−C12 · n+

)
q+ +

(
1

2
−C12 · n−

)
q− − C11(u+n+ + u−n−),

D1.1: Internal report on formulation of ExaFLOW algorithms 25

where the scalar parameters C11, C22 and the vectors C12 and C21 are chosen to ensure the
stability of the method and its optimal convergence properties. The numerical traces on
Dirichlet boundary of Ω reduce to

ũ =

(
1

2
+ C21 · n

)
u+

(
1

2
−C21 · n

)
gD

q̃ = q − C11(u− gD)n,

and to

ũ = u− C22(q · n+ − gN),

q̃ =

(
1

2
−C12 · n

)
+

(
1

2
+ C12 · n

)
gNn

on Neumann boundary ∂ΩN .

4.2.1 Local formulation of the HDG method

Assume that the function
λ := ũDG ∈Mh, (34)

is given. Then the solution restricted to element Ωe is a function ue, qe in P (Ωe) × Σ(Ωe)
satisfies the following equations:∫

Ωe

(∇v · qe) dx−
∫
∂Ωe

v(ne · q̃e) ds =

∫
Ωe

v f dx, (35)

∫
Ωe

(w · qe)dx = −
∫
Ωe

(∇ ·w)uedx +

∫
∂Ωe

(w · ne)λ ds, (36)

for all (v,w) ∈ P (Ωe) × Σ(Ωe). For a unique solution of the above equations to exist, the
numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ωe (37)

for some positive function τ .

4.2.2 Global formulation

We denote by (Uλ,Qλ) and by (Uf ,Qf) the solution to the local problem (35), (36) when
λ = 0 and f = 0, respectively. Due to the linearity of the original problem (25) and its
mixed form, the solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf). (38)

D1.1: Internal report on formulation of ExaFLOW algorithms 26

In order to uniquely determine λ, we require that the boundary conditions be weakly satisfied
and the normal component of the numerical trace of the flux q̃ given by (37) is single valued,
rendering the numerical trace conservative.

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (39)∑
Ωe∈Th

∫
∂Ωe

µq̃ · n ds =

∫
∂ΩN

µgN ds, (40)

for all µ ∈ M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh.
In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions in

terms of the basis φej(x) for the expansions over elements and the basis ψlj(x) over the traces
of the form:

ue(x) =

Ne
u∑

j=1

φej(x)ûe[j] qek(x) =

Ne
q∑

j=1

φej(x)q̂e
k
[j] λl(x) =

Nλ
l∑

j=1

ψlj(x)q̂l[j]

4.2.3 Matrix form

We first define several local matrices stemming from standard Galerkin formulation, where
scalar test functions ve are represented by φei (x), with i = 1, . . . , N e

u and vector test functions
are represented by ekφi where e1 = [1, 0]T and e2 = [0, 1]T :

De
k[i, j] =

(
φei ,

∂φej
∂xk

)
Ωe

Me[i, j] =
(
φei , φ

e
j

)
Ωe

Ee
l [i, j] =

〈
φei , φ

e
j

〉
∂Ωel

Ẽe
kl[i, j] =

〈
φei , φ

e
jn

e
k

〉
∂Ωel

Fe
l [i, j] =

〈
φei , ψ

σ(e,l)
j

〉
∂Ωel

F̃e
kl[i, j] =

〈
φei , ψ

σ(e,l)
j nek

〉
∂Ωel

If the trace expansion matches the expansions used along the edge of the elemental expansion
and the local coordinates are aligned, that is ψ

σ(e,l)
i (s) = φk(i)(s) then Ee

l contains the same

entries as Fe
l and similarly Ẽe

kl contains the same entries as F̃e
kl.

Inserting the finite expansions of the trial functions into equations (35) and (36) and
using the definition of the flux (37) yields the matrix form of local solvers

[
(De

1)T (De
2)T
] q̂e

1

q̂e
2

− Ne
b∑

l=1

[
Ẽe

1l Ẽ
e
2l

] q̂e
1

q̂e
2

+

Ne
b∑

l=1

τ e,l
[
Ee
l û

e − Fe
l λ̂

σ(e,l)
]

= f e (41)

Meq̂e
k

= −(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 0, 1 (42)

D1.1: Internal report on formulation of ExaFLOW algorithms 27

The global equation for λ can be obtained by discretizing the transmission condition (40).
We introduce local element-based and edge-based matrices

F
l,e

[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn

e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

and define
gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τ e,i + τ f,j)Ḡlλ̂
l
− τ e,iF̄l,eue − τ f,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j). Noting that the following two identities
hold

Fe
l =

(
F̄σ(e,l),e

)T
F̃e
kl =

('
F
σ(e,l),e

k

)T
, (43)

the transmission condition can be recast as
[(

F̃e
1

)T
F̃e

2

)T] q̂e
1

q̂e
2

+ τ e,iḠσ(e,i)λ̂
σ(e,i)

− τ e,i
(
Fe
j

)T
ue

+

[(

F̃f
1

)T
F̃f

2

)T] q̂f
1

q̂f
2

+ τ f,jḠσ(f,j)λ̂
σ(f,j)

− τ f,j
(
Ff
j

)T
uf

 = gl
N

(44)

4.2.4 Combined Continuous-Discontinuous Formulation

To take advantage of the efficiency and lower memory requirements of continuous Galerkin
method together with the flexibility and more favourable communication patterns of dis-
continuous Galerkin methods in domain-decomposition setting, we combine both as follows.
Each mesh partition is seen as a ‘macro-element’, where the governing equation is discretized
by continuous Galerkin solver, while the patches are coupled together weakly as in HDG. This
means that the scalar flux (hybrid variable) λ is only defined on inter-partition boundaries.

4.3 Continuous-Discontinuous Solver

The motivation of this section is to take the matrix form of the HDG solver and apply
it in continuous setting. Intuitively, we would expect the discrete weak form to reduce to
the ‘standard’ Laplace operator with some additional terms, which will be only applied on
elements adjacent to partition boundaries, providing weak coupling between each partition
and the global trace variable.

D1.1: Internal report on formulation of ExaFLOW algorithms 28

Note that in equation (41), we can assume that Ee
l = Fe

l if the primal variable u and the
hybrid variable λ use the same expansion basis on element traces. (41) then becomes(De

1)T −
Ne
b∑

l=1

Ẽe
1l

 q̂e
1

+

(De
2)T −

Ne
b∑

l=1

Ẽe
2l

 q̂e
2

= f e (45)

On affine elements, we can write(De
k)
T −

Ne
b∑

l=1

Ẽe
kl

 q̂e
k

= −De
k, k = 0, 1.

This is a discrete representation of integration by parts:∫
Ωe
φi

∂

∂xk
φjdx = −

∫
Ωe

∂

∂xk
φiφjdx +

∫
∂Ωe

φiφjn
e
kds.

After substituting this identity into the local solver (45), the equation (45) becomes

−De
1q̂
e

1
−De

2q̂
e

2
= f e, (46)

which is a discrete counterpart of the original mixed form −∇ · q = f(x).
The flux in (42) is

q̂e
k

=
(
Me
)−1

−(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)

 k = 0, 1 (47)

and inserting this expression into (46) yields the following form:

−De
1

(
Me
)−1

(De
1)T ûe −

Ne
b∑

l=1

F̃e
1lλ̂

σ(e,l)

−De
2

(
Me
)−1

(De
2)T ûe −

Ne
b∑

l=1

F̃e
2lλ̂

σ(e,l)

 = f e

(48)

The terms −De
k

(
Me
)−1

(De
k)
T , k = 0, 1 represent Laplace operator, the rest is responsible

for weak enforcement of Dirichlet boundary conditions prescribed by λ on the partition
boundary.

4.4 Hybrid Formulation for Continuous Galerkin Method

This text is a brief summary of some parts of [7], where again we adapt similar notation to
save redefinition in this document. The paper provides a generic framework for hybridization
of several methods, among them continous Galerkin. One could thus consider hybridization
on a ‘local scale’ within each partition.

D1.1: Internal report on formulation of ExaFLOW algorithms 29

As in the previous sections, we suppose that the solution on element traces ∂K,K ∈ Th(Ω)
is given by u = λ+ g, where

λ =

{
u on ∂K\∂Ω,
0 on ∂K ∩ ∂Ω,

and g =

{
0 on ∂K\∂Ω,
g on ∂K ∩ ∂Ω,

Because the problem is linear, we can seek the solution as a pair (uH , qH) = (Qλ + Qg +
Qf , Uλ + Ug + Uf) in Ω with local solvers (Q(·), U(·)) defined in each element K ∈ Th(Ω):

Qλ +∇Uλ = 0, ∇ ·Qλ + Uλ = 0 on K, Uλ = λ on ∂K (49)

Qf +∇Uf = 0, ∇ ·Qf + Uf = f on K, Uf = 0 on ∂K (50)

Note that this decomposition of (q, u) is only possible if the normal component of (qλ+qg +
qf) is continuous across interelement boundaries, i.e.

JQλ + Qg + QfK = 0, (51)

where J·K denotes the jump of a normal vector across ∂K.
The goal of this section is to identify the bilinear form ah(·, ·) and right-hand side linear

form bh(·) such that the hybridized continuous Galerkin method on element traces can be
written as

ah(λh, µ) = bh(µ) ∀µ ∈Mh.

This global equation for the trace-variable λh together with properly defined local solvers
should then yield the same solution as the ‘standard’ weak form of continuous Galerkin
method for Laplace equation.

4.4.1 Global Equation for Trace Variable

Without making any further assumption on local solvers other than stated above, it is
possible to determine a variational formulation for the trace variable λ. Several auxiliary
equalities used in the derivation are stated first. It can be shown that:

(Qm +∇Um,v)Th = 〈1, J(Um −m)vK〉Eh (52)

(∇ ·Qm + Um, w)Th = −
〈

1, Jw(Q̂m −Qm)K
〉
Eh

(53)

(Qf +∇Uf ,v)Th = 〈1, JUf vK〉Eh (54)

(∇ ·Qf + Uf − f, w)Th = −
〈

1, Jw(Q̂f −Qf)K
〉
Eh

(55)

More detailed derivation:

1. The local solver satisfies on each element K

(Qm,v)K − (Um,∇ · v)K = −〈m,v · n〉∂K
(Qm,v)K − 〈Um,v · n〉∂K + (∇Um,v)K = −〈m,v · n〉∂K

(Qm,v)K + (∇Um,v)K = +〈Um −m,v · n〉∂K

D1.1: Internal report on formulation of ExaFLOW algorithms 30

And after summing over all elements K ∈ Th, we have

(Qm +∇Um,v)Th = 〈1, J(Um −m)vK〉Eh

2. The second condition on local solver (Um,Qm) states that

−(∇w,Qm)K + 〈w, Q̂m · n〉∂K + (Um, w)K = 0

and after integrating by parts

−〈w,Qm · n〉∂K + (w,∇ ·Qm)K + 〈w, Q̂m · n〉∂K + (Um, w)K = 0

(∇ ·Qm + Um, w)K = −
〈
w, (Q̂m −Qm) · n

〉
∂K

Finally, summation over all K ∈ Th gives

(∇ ·Qm + Um, w)Th = −
〈

1, J(Q̂m −Qm)wK
〉
Eh
.

3. For the second local solver (Uf ,Qf), we have

(Qf ,v)K − (Uf ,∇ · v)K = 0

(Qf ,v)K − 〈Uf ,v · n〉∂K + (∇Uf ,v)K = 0

(Qf +∇Uf ,v)K = 〈Uf ,v · n〉∂K
(Qf +∇Uf ,v)Th = 〈1, JUfvK〉Eh

4. The second property of the local solver (Uf ,Qf) is −(∇w,Qf)K + 〈w, Q̂f · n〉∂K +
(Uf , w)K = (f, w)K and hence

−〈w,Qf · n〉∂K + (w,∇ ·Qf)f + 〈w, Q̂f · n〉∂K + (Uf , w)K = (f, w)K

(∇ ·Qf + Uf − f, w)K = −
〈
w, (Q̂f −Qf) · n

〉
∂K

To write the global transmission condition, we will use several identities stated in the fol-
lowing lemma.

D1.1: Internal report on formulation of ExaFLOW algorithms 31

Lemma 1 (Elementary Identities). For any m,µ ∈Mh and f ∈ L2(Ω)

(i) −
〈
µ,

r
Q̂m

z〉
Eh

=(Qm,Qµ)Ω + (Um, Uµ)Ω

+
〈

1,
r

(Uµ − µ)
(
Q̂m −Qm

)z〉
Eh
,

(ii) −
〈
µ,

r
Q̂gh

z〉
Eh

=−
〈
gh,

r
Q̂µ

z〉
Eh

+
〈

1,
r

(Uµ − µ)
(
Q̂gh
−Qgh

)z〉
Eh

−
〈

1,
r

(Ugh − gh)
(
Q̂µ −Qµ

)z〉
Eh
,

(iii) −
〈
µ,

r
Q̂f

z〉
Eh

=− (f, Uµ)Th

+
〈

1,
r

(Uµ − µ)
(
Q̂f −Qf

)z〉
Eh

−
〈

1,
r
Uf
(
Q̂µ −Qµ

)z〉
Eh
.

Proof. Recall that the weak form of local solvers is

(Qm,v)K − (Um,∇ · v)K = −〈m,v · n〉∂K (56)

−(∇w,Qm)K +
〈
w, Q̂m · n

〉
∂K

+ (Um, w)K = 0 (57)

and

(Qf ,v)K − (Uf ,∇ · v)K = 0 (58)

−(∇w,Qf)K +
〈
v, Q̂f · n

〉
∂K

+ (Uf , w)K = (f, w)K (59)

For identity (i) we have

−
〈
µ,

r
Q̂m

z〉
Eh

= −〈µ, JQmK〉Eh −
〈
µ,

r
(Q̂m −Q)

z〉
Eh

=
[
Note that due to (56), (Qµ,Qm)K − (Uµ,∇ ·Qm)K = −〈µ,Qm · n〉∂K

]
= (Qµ,Qm)Th − (Uµ,∇ ·Qm)Th −

〈
µ,

r
(Q̂m −Q)

z〉
Eh

=
[
Use eq. (53) to substitute for (Uµ,∇ ·Qm)Th

]
= (Qµ,Qm)Th + (Um, Uµ)Th

+
〈

1,
r
Uµ(Q̂m −Q)

z〉
Eh

−
〈
µ,

r
(Q̂m −Q)

z〉
Eh

D1.1: Internal report on formulation of ExaFLOW algorithms 32

To prove identity (ii), note that the bilinear form

B(m,µ) =
〈
µ,

r
Q̂m

z〉
Eh

+
〈

1,
r

(Uµ − µ)
(
Q̂m −Qm

)z〉
Eh

is symmetric due to the proven result (i) of this lemma. The identity (ii) then follows from
B(µ, gh) = B(gh, µ). The identity (iii) can be written as

−
〈
µ,

r
Q̂f

z〉
Eh

= −
〈
µ,

q
Qf

y〉
Eh
−
〈
µ,

r
(Q̂f −Qf)

z〉
Eh

=
[
Note that due to (56), (Qµ,Qf)K − (Uµ,∇ ·Qf)K = −

〈
µ,Qf · n

〉
∂K

]
= (Qµ,Qf)Th − (Uµ,∇ ·Qf)Th −

〈
µ,

r
(Q̂f −Qf)

z〉
Eh[

Use identity (55)
]

= (Qµ,Qf)Th − (Uµ,∇ ·Qf)Th +
{

(∇ ·Qf , Uµ)Th + (Uf , Uµ)Th − (f, Uµ)Th

}
+
〈

1,
r

(Uµ − µ)(Q̂f −Qf)
z〉

[
Use local solver (58) for the first term

]
= (∇ ·Qµ, Uf)Th + (Uf , Uµ)Th − (f, Uµ)Th

+
〈

1,
r

(Uµ − µ)(Q̂f −Qf)
z〉

[
Apply identity (53) for the underlined terms

]
= −(f, Uµ)Th +

〈
1,

r
(Uµ − µ)(Q̂f −Qf)

z〉
Eh
−
〈

1,
r
uf (Q̂m −Qm)

z〉
Eh

Theorem 1. λh ∈Mh satisfies the conservativity condition〈
µ,

r
Q̂λh

+ Q̂gh
+ Q̂f

z〉
Eh

= 0 ∀µ ∈Mh

if and only if
ah(λh, µ) = bh(µ) ∀µ ∈Mh, where

ah(λh, µ) = (Qη,Qµ)Th + (Uη, Uµ)Th +
〈

1,
r

(Uµ − µ)(Q̂η −Qη)
z〉
Eh

bh(µ) =
〈
gh,

r
Q̂µ

z〉
Eh

+ (f, Uµ)Th −
〈

1,
r

(Uµ − µ)
(
Q̂f −Qf

)z〉
Eh

+
〈

1,
r
Uf
(
Q̂µ −Qµ

)z〉
Eh

−
〈

1,
r

(Uµ − µ)
(
Q̂gh
−Qgh

)z〉
Eh

+
〈

1,
r

(Ugh − g)
(
Q̂µ −Qµ

)z〉
Eh

for all µ, η ∈Mh.

D1.1: Internal report on formulation of ExaFLOW algorithms 33

Proof. The proof is a direct consequence of the previous lemma.

The weak form for λ in the case of continuous Galerkin method reduces to(
∇Uη,∇Uµ

)
Th

+ (Uη, Uµ)Th = (f, Uµ)Th +
〈
gh, JQ̂µK

〉
(60)

4.5 Summary of progress and outlook

The preceding sections outline our efforts in establishing a fairly complex initial formula-
tion of this joint CG-HDG method, which represents a significant portion of our manpower
expended on this task to date. This effort lies solely within tasks 1.3.1 (development of a
mixed CG-HDG formulation within the Nektar++ framework) and 1.3.2 (testing and verifi-
cation of the formulation) as described in the description of work. From an implementation
perspective, the majority of the intra-node CG code is now complete. We have extended our
implementation of the CG method, within our spectral/hp element framework Nektar++ [5],
to include the implementation of the weak Dirichlet boundary condition imposed by equa-
tion (48). Formal testing for convergence of this is now anticipated to be done in the coming
weeks. Once this is completed, we then aim to finalise the formulation of the intra-node
HDG global solver terms and expedite the implementation of this in order to perform initial
tests of the CG-HDG method in two dimensions.

Looking ahead, once tests of the CG-HDG method have been completed, the solution
on both the coarse HDG space and the CG nodes still relies on an iterative method such as
the conjugate gradient method. We will therefore be investigating methods for the efficient
preconditioning of these systems, such as those based on an additive Schwarz technique,
as part of task 1.3.3 (coarse- and fine-scale preconditioning strategies). Part of this work
has already started in investigating multi-level preconditioners developed by EPFL on our
existing HDG formulation. We additionally hope to investigate the use of algebraic multigrid
solvers being developed by KTH as part of task 1.1. Finally, we will explore the mapping of
the solver technique to the hardware heterogeneity as part of task 1.3.4 (investigate HDG-
CG partitioning onto interconnect topology), which will explore the range of discretization
strategies and their performance on multi-cpu clusters with hierarchical dragonfly topology
in conjunction with tasks 1.1.1.a and 1.2.4.

5 Task 1.4: Data reduction (USTUTT)

5.1 Introduction

The steady increase of available computer resources has enabled engineers and scientists to
use more and more complex models to simulate a myriad of fluid flow problems. While
modern high performance computers (HPC) have seen a steady growth in computing power,
this trend, however, has not been mirrored by a significant gain in data transfer rates.
Current systems are capable of producing and processing high amounts of data quickly,
but the overall simulations are limited by how fast the system can read and write data.

D1.1: Internal report on formulation of ExaFLOW algorithms 34

Considering Computational Fluid Dynamics (CFD), simulations discretize the flow field by
a large number of data points and represent the flow by a collection of scalar and vector
fields. The move to exascale performance and finer mesh resolutions will consequently only
exacerbate this problem.

One of the major pitfalls of storing ‘raw’ simulation results lies in the implicit and re-
dundant manner in which it represents the flow physics. Thus transforming the large ‘raw’
to compact feature- or structure-based data could help to overcome this bottleneck and
significantly boost the performance and efficiency of HPC systems today and in the near
future [32, 33].

The aim of this task is to minimize the impact of the I/O bottleneck on the overall
computing performance by reducing the amount of data transferred from memory to disk.
For this, the ‘raw’ data produced by a flow field solver will be transformed to spectral
space and compressed by means of quantization and entropy encoding. The basic approach
is similar to techniques utilized for still (JPEG, JPEG-2000) and motion image (H.264)
compression. Similar algorithms have been used in the medical field to significantly reduce
the amount of unsteady data produced by modern, three-dimensional diagnostic imaging
systems [3]. We will present first results regarding these techniques in section 5.2.

In a second part, we will evaluate existing methods, like wavelets, proper-orthogonal
decomposition (POD), singular value decomposition (SVD), dynamic-mode decomposition
(DMD) and emerging new ideas for the present task. Special attention will be paid to
algorithms that identify, extract and preserve physical structures in the flow field, like vortices
and shear layers, for instance. This alone has the potential of reducing the initial raw data
by more than an order of magnitude. SVD and DMD have already been surveyed in the last
months. We will hence give a summary of our results in this fields in sections 5.3 and 5.4.

5.2 Comparative study on compression techniques

Our first objective was to compare the performance of two of the most widely used compres-
sion techniques – namely the discrete cosine and wavelet transform – in terms of compression-
induced error at a prescribed bit rate. For testing the different algorithms we used the data
set from a numerical simulation of a flat plate flow at Reθ,0 = 300, where θ denotes the
boundary layer momentum thickness and the index 0 indicates flow properties at the inlet of
the simulation domain. The spatial resolution of the numerical grid was set to 97x123x400
nodes in wall-normal, spanwise and streamwise directions respectively.

5.2.1 Methodology

To prepare the three-dimensional floating point arrays for the compression algorithms, each
variable was normalized in such a way that its range is between 0 and 255. Each array is
then rounded up to the nearest integer and mapped into an array of unsigned 8-bit integers.
To conduct the comparative study, the three-dimensional data sets were then processed at
a prescribed rate of 0.7 bits per pixel using the still and motion image codecs described

D1.1: Internal report on formulation of ExaFLOW algorithms 35

in Section 5.2.2. The three metrics used to analyze the image compression schemes are
the maximum (errmax), the average (errave) and the mean square error (mse), which are
evaluated as follows:

errmax = max |I(x, y, z)− I ′(x, y, z)| (61)

errave =
1

ijk

i∑
x=1

j∑
y=1

k∑
z=1

|I(x, y, z)− I ′(x, y, z)| (62)

mse =
1

ijk

i∑
x=1

j∑
y=1

k∑
z=1

|I(x, y, z)− I ′(x, y, z)|2 , (63)

where I(x, y, z) is the original, I ′(x, y, z) the decompressed image and i, j, k the dimensions
of the volumetric data set.

5.2.2 Compression Algorithms

In this study we used the JPEG and JPEG-2000 codecs to process streamwise cross-sections
of the simulation data as a group of 400 two-dimensional images. Additionally, the JP3D
standard was applied to compress the three-dimensional arrays in a singe file. Finally, the
Motion JPEG-2000 scheme was employed to interpret the cross-sections of the computational
grid as a temporal sequence of video frames.

The JPEG Algorithm. The JPEG (Joint Photographic Experts Group) standard is
a popular method used for lossy compression of 8-bit color and greyscale images. In its
more common form, the algorithm uses a discrete cosine transform (DCT) to transform
the signal information to spectral space. Depending on the given degree of compression, the
algorithm then truncates DCT coefficients associated with high frequency image components.
Finally, the compression procedure stores the remaining coefficients using a Huffman-Coding
algorithm that exploits redundancies in the image information [33].

The JPEG-2000 algorithm. JPEG 2000 (JP2) is a compression standard used to store
images of any bit depth and colour space (i.e. 16-bit greyscale images). In contrast to the
JPEG standard it is based on the discrete wavelet transformed (DWT) that can be performed
by either the reversible Le Gall-(5,3) taps filter for lossless or the non reversible Daubechies-
(9,7) tabs filter for lossy coding. Furthermore, JPEG2000’s volumetric extension (JP3D)
extents the same capabilities to three-dimensional data sets. Following the transformation to
spectral space the DWT coefficients are then truncated during a quantization step and further
compressed by means of Embedded Block Coding with Optimized Truncation (EBCOT).
[3, 33]

The Motion JPEG-2000 Algorithm. Motion JPEG-2000 (MJ2) is a digital video se-
quence that is made up of a series of still, complete images compressed with the JPEG-2000

D1.1: Internal report on formulation of ExaFLOW algorithms 36

standard. Unlike the more commonly used MPEG-4 codec, which employs inter-frame coding
techniques to compress video sequences temporally as well as spatially, MJ2 is more resilient
to error propagation, more scalable, better suited for network environments and allows for
random access of single images. Furthermore the intra-frame-only compression is insensitive
to complex motion, at the expense of increased storage and bandwidth requirements. [23]

5.2.3 Results

Figure 3 shows the compression ratio, Figure 4 the maximum-, average and mean square
error for the JPEG, JPEG-2000, JP3D and Motion JPEG-2000 compression codecs. In
general we can conclude that JP2 offers a superior compression rate to error ratio when
compared to the more common JPEG standard. Exploiting the three-dimensional

JPG

D
a
ta

 C
o
m

p
re

ss
io

n
 R

a
ti

o
 [

-]

JPG-2000 JP3D MJ2

16

14

12

10

8

4

6

2

0

18

Figure 3: Data Compression Ratio for dif-
ferent still and motion image compression
schemes.

JPG JPG-2000 JP3D MJ2

5

4

3

2

1

0

6

E
rr

o
r

[b
it

]

Maximum Error
Average Error
Mean Square Error

Figure 4: Maximum-, Average- and Mean
Square Error for different still and motion
image compression schemes.

redundancies in the image signal with JP3D proved to be the best compression technique
with only minimal introduction of pixel error at a comparable bit rate. The processor time
spent for compression was found to be moderate with 4 seconds for the JPEG codec, while
JP2 took almost four times the processing time. JP3D and MJ2, on the other hand, exhibited
only a marginal increase over JPEG’s compression time.

5.2.4 Summary of progress and outlook

In this section we described a comparative study of lossy compression schemes based on the
Discrete Cosine (DCT) and the Discrete Wavelet Transform (DWT). Comparison between
these two compression techniques was done using a three-dimensional data set from a numer-
ical simulation of a flat plate flow. Streamwise cross-sections of the plate flow were processed
as two-dimensional still images using the JPEG and JPEG-2000 codecs as well as a temporal
sequence of video frames using the Motion JPEG-2000 scheme. Furthermore, the JP3D stan-
dard was employed to compress the entire vector field into a single file. Based on the results

D1.1: Internal report on formulation of ExaFLOW algorithms 37

of this study we found that JPEG-2000, with its volumetric extension (JP3D), enables us to
compress three-dimensional CFD data with minimal error and moderate compression time.

Looking ahead, the tested JP3D standard is still only defined to operate on integer arrays
and the required truncation of the simulation data is unacceptable due to the irreversible data
loss. We will therefore investigate extensions to the JPEG-2000 standard which allow for the
compression of floating point data. We additionally hope to investigate the use of Contourlets
[10] that allow for the efficient transformation of images with smooth regions separated by
smooth boundaries. Finally, we will explore modern inter-frame coding techniques [3] to
exploit structural flow field redundancies.

5.3 SVD

5.3.1 Description of the method

SVD is one of the most useful tools in matrix algebra and includes the concept of the
eigenvalue/eigenvector decomposition as prerequisite for data/dimension reduction. We start
with the definition of SVD. The SVD is the expression of any m× n matrix A of rank k in
the following form:

A = UΣV T ,Σ = diag(σ1, σ2, . . . , σk) (64)

where the columns of U and V are orthonormal with UTU = I = V TV as well as Σ is a
diagonal matrix of positive numbers σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0. An equivalent way of writing
is:

A =
∑

ukσkv
T
k . (65)

We can also find the fundamental theorem of SVD as shown in Figure 5 . The vectors
uk of an orthonormal U , called the left singular vectors, are the eigenvectors of AAT with
the associated eigenvalues σk. The vectors vk of orthonormal V , called the right singular
vectors, are the eigenvectors of ATA with the same associated eigenvalues σk.

Figure 5: The form of SVD

D1.1: Internal report on formulation of ExaFLOW algorithms 38

Assume that we want to represent an extremely large matrix A by its SVD components
U , Σ and V and that these matrices are also too large to store. The best way to reduce the
dimensionality of the three matrices is to set the smallest of the singular values to zero.

There are some excellent software packages available for obtaining the SVD in a nu-
merically accurate manner. In particular, the LAPACK (Linear Algebra Package) library
provides much of the functionality needed for dense matrices. A parallel version of the
LAPACK functionality is available in the ScaLAPACK (Scalable Linear Algebra Package)
library, which is designed for message passing parallel computers and can be used on sys-
tem that supports MPI. In the field of dimension reduction, the LAPACK and ScaLAPACK
libraries provide high-performance implementations of several versions of SVD for dense ma-
trices. Cray provides libraries for scientific computing in its libsci library, which includes
LAPACK as well as ScaLAPACK and is loaded by default. The SVD has been tested with
these implementations of LAPACK and ScaLAPACK on our Cray XC40 (Hazel Hen).

The SVD is strongly connected to the eigenvalues of symmetric matrices ATA and AAT ,
where

AT = V ΣTUT . (66)

Because Σ is a diagonal matrix, transposing it has no effect. Thus

ATA = V Σ2V T . (67)

The formulation is shown in Figure 6. In this case only right singular vectors V and
eigenvalues Σ remain to be computed. Since the rank of A is k, all other eigenvalues will be
zero, so that the data could be reduced.

Figure 6: The SVD of matrices ATA

An implementation of the SVD for large sparse matrices is available through ARPACK
(Arnoldi Package), which has also been used to test the SVD algorithms on Hazel Hen.

5.3.2 Outlook

In the next step, other similar mechanisms will be studied and the data-reduction strategies
will be implemented and tested in ExaFLOW’s use cases.

D1.1: Internal report on formulation of ExaFLOW algorithms 39

5.4 Dynamic Mode Decomposition

The simulation of unsteady fluid flows is essential to predict expected and unexpected fea-
tures of the systems to be analysed. It is not clear how to extract all the special features
of the simulated flow in terms of (quasi-)periodicity or invariance or dominant modes. This
applies in different ways to all unsteady processes in nature, technology and economy. Their
are several algorithmical approaches for analysis as defining averages, extracting dominant
frequences by Fourier Analysis of the signal, Principal Component Analysis (PCA), Proper
Orthogonal Decomposition (POD) or Empirical Orthogonal Functions (EOF) in climatology
(see http://brunnur.vedur.is/pub/halldor/PICKUP/eof.pdf). The mathematical kernel of
these is the same. Somes years ago a new approach has been given to analyze a large set
of time dependent signals especially related to fluid flows by the so called Dynamic Mode
Decomposition (DMD) of Peter Schmid. This DMD turned out to decompose a time sig-
nal into a linear combination of different modes multiplied by the k-th power of a complex
value for getting the k-th time step. Williams, Kevrekides and Rowley [36] generalized the
approach to Extended DMD and gave a relation to the Koopman operator [18], which again
gives the opportunity to apply techniques of the functional analytic ergodic theory (see [11]
and [4]). The Koopman operator is directly related to the the nonlinear equation of interest,
here the Navier-Stokes equations. The Koopman operator acts on an infinite dimensional
space of observables. As a linear and bounded operator it has a spectrum and may have
eigenfunctions in the space of observables, which can be interpreted in terms of (here) the
fluid flow. Under some circumstances DMD might give approximations of some eigenvalues
and eigenfunctions of the Koopman operator.

5.4.1 Analysis

Assume K is a compact topological space and ϕ is a continuous nonlinear operator

ϕ : K −→ K (68)

In this context K is part of the discrete function space containing the discrete time steps of
the iterations given by the discrete Navier-Stokes operator ϕ. Assume F ⊂ C (K) is a linear
subspace of “observables” with the stability property

f ∈ F ⇒ f ◦ ϕ ∈ F (69)

Observables are e.g. the mean pressure of a fluid domain or the evaluation operators δx at
all points x ∈ Ω for continuous functions defined on the domain Ω. The operator Tϕ defined
by

Tϕ : F −→ F (70)

f 7→ Tϕf = f ◦ ϕ (71)

is named the Koopman-Operator of ϕ on F (B.O. Koopman 1931). Tϕ is linear and
continuous and has a spectrum, but acts on an infinite dimensional space. It may have

D1.1: Internal report on formulation of ExaFLOW algorithms 40

eigenvalues and eigenfuctions in F (not in K!). For two eigenvalues also their product is an
eigenvalue if the product of both eigenfunctions is also element of F and is not disappearing.

The eigenfunctions fulfill Schröders functional equation

f (ϕq) = λf (q) ∀ q ∈ K

for some constant λ. It might be a problem to interpret this equation in terms of a physical
phenomenon.

To make the operator Tϕ manageable for numerical purposes, it is important to find a
small space of observables F . The smallest reasonable numerical setting is to investigate the
finite sequence

Gf (q) =
[
gfk (q)

]
k=0,··· ,n

=
[
f
(
ϕkq
)]
k=0,··· ,n (72)

for a single observable f starting with an arbitrary state q ∈ K, a first finite part of a
trajectory. Starting with q

′
= ϕjq is also a reasonable option enforcing the significance of a

shifted sequence on the same trajectory. A finite number of linearly independent observables
S can be combined as a vector of observables. Explicit knowlegde of the operator ϕ is not
needed for numerical handling; to know the effect of the operator on the state space as
measured by the observables is sufficient.

The convolution product of two polynom-coefficient vectors c with deg c = p and b
with deg b = q is the given by the product polynom

c ∗ b (λ) = c (λ) b (λ) ∀ λ ∈ C. (73)

The convolution-matrix An(c) for a coefficient vector c of deg c = p is

A(c) = An(c) =

0 n− p
0 c0

1 c1
. . .

. . c0

. . c1

p cp
...

.
. . .

n cp

(74)

Let c be the coefficient-vector of a polynom with deg c = p (cp 6= 0). The convolution
matrix acts as the convolution product (deg b = n− p)

A(c) b = c ∗ b (75)

D1.1: Internal report on formulation of ExaFLOW algorithms 41

Let G the matrix of series of measurements or a contiguous finite part of observables
applied to the sequence of states in K. Let c be a polynom coefficient vector with with a
degree deg c = p not larger than the sequence. We multiply G with the convolution matrix

G An(c) = R (76)[
g0 g1 g2 · · · gn

]
An(c) =

[
r0 r1 · · · rn−p

]
(77)

That is the same as multiplying all possible n − p contiguous fractions of G by c from the
right and building a new matrix with n− p vectors. We expect c selected in a way, that R
is small in some sense. To analyse this, we decompose G in two parts related to c

G = Gmodes + ∆G (78)

The first part Gmodes will be given by a linear decomposition in modes defined by the roots
of c with the property

Gmodes A(c) = 0 (79)

It will described later. The second part defines the defect in equation (76) given by

∆G A(c) = R (80)

There are some not unique but reasonable requirements in selecting ∆G. We restrict ∆G to
be

∆G = R (A(c)∗A(c))
−1

A(c)∗ (81)

With these assumptions we get by (76)

∆G = G Q (82)

for the selfadjungated projection Q (Q∗ = Q = Q Q)

Q = A(c) (A(c)∗A(c))
−1

A(c)∗ (83)

with the property

(I −Q) A(c) = 0. (84)

For Gmodes we have by (84)

Gmodes = G−∆G = G−GQ = G (I −Q) (85)

and therefore

0 = Gmodes A(c) =
[
g̃0 g̃1 . . . g̃n

]
A(c) (86)

D1.1: Internal report on formulation of ExaFLOW algorithms 42

We can show that this allows a decomposition in p Koopman modes vl

Gmodes =
[
g̃0 g̃1 . . . g̃n

]
=

p∑
l=1

vl
[
1, λl, λ

2
l , . . . , λ

n
l

]
(87)

with the modes

vl = Gmodes
1

wl (λl)

[
wl
0

]
(88)

given by the polynom

c (λ) = (λ− λl)wl (λ) ∀ λ ∈ C or c = wl ∗
[
−λl

1

]
(89)

We quantify now the l2-norm ‖∆G‖2 of the defect operator ∆G. Taking µ = ‖∆G‖2
2 we

have to analyse the operator inequality

∆G∗∆G ≤ µ I (90)

or by (82)

Q∗ H Q ≤ µI (91)

with the covariance matrix H = GT G and the projection Q in (83). Because A(c) has full
rank, this is equivalent to find a minimum µ > 0 fulfilling

A(c)∗ H A(c) ≤ µ A(c)∗ A(c) (92)

we summarize

Theorem 2. Given is an arbitrary coefficient vector c with deg c = p. Assume that the
polynom c has no multiple roots. We can decompose G in two parts

G = Gmodes + ∆G (93)

where for ∆G = G Q with Q = A(c) (A(c)∗A(c))
−1

A(c)∗ fulfilling the requirements (81)
we have ‖∆G‖2 ≤

√
µ iff

A(c)∗ H A(c) ≤ µ A(c)∗ A(c) (94)

For the roots λl of c and vl = 1
wl(λl)

Gmodes

[
wl
0

]
with

c = wl ∗
[
−λl

1

]
(95)

D1.1: Internal report on formulation of ExaFLOW algorithms 43

and the part of modes

Gmodes =

p∑
l=1

vl
[
1, λl, λ

2
l , . . . , λ

n
l

]
(96)

The complex vectors vl (q) =
(
vfl (q)

)
f∈S

are named Koopman modes ([4]).

The p roots provide different behaviour: |λl| = 1 for unsteady but stable modes (typical);
|λl| < 1 for disappearing modes; |λl| > 1 for unstable modes. A system with such a mode
cannot be stable.

It is possible to calculate a provisional c, delete any unwanted root as long as µ remains
small. The degree of c should be small to limit the number of modes; on the other hand
a small degree enlarges the approximation error µ. We have an algorithm minimizing µ
and calculating c for a given degree p. This algorithm is still inefficient. Remark, that the
classical DMD formulation of [34] is a special case for p = n.

Important for calculations for discretized partial differential equations is, that whereas G
is a very large matrix with many rows, H is a quadratic matrix having the number of time
steps as dimension.

5.4.2 Simplified approach

Applying the trace on both sides of this operator inequality, we get by definition of H =
GT G for the j-th shifted row Gj =

[
g0+j g1+j . . . gn+j

]
1

n− p+ 1

n−p∑
j=0

∥∥Gjc
∥∥2 ≤ µ

n− p+ 1

n−p∑
j=0

‖c‖2 = µ ‖c‖2 (97)

or with the collapsed matrix Hn−p which is composed by a sum of shifted submatrices of H

Hn−p =
1

n− p+ 1

n−p∑
j=0

(
Gj
)T
Gj (98)

we have

< Hn−p c , c > ≤ µ ‖ c ‖2 (99)

µ is not smaller than the largest eigenvalue of Hn−p

The coefficient vector c can be defined as the eigenvector of the minimal eigenvalue of
the positive semidefinite matrix Hn−p

Hn−p c = µmin c (100)

µmin underestimates µ in (94) The matrix Hn−p can simply derived from the matrix H. The
computational effort is relatively small. This procedure is an alternative to the procedure
described before but has shortcomings. The vector c generated by this procedure might be
not the best in sense of (94). It might introduce additional unwanted eigenvalues.

D1.1: Internal report on formulation of ExaFLOW algorithms 44

0 n− p n

0

n− p

n

Figure 7: shifted submatrices as part of the total matrix

5.4.3 Ensembles

Summing up matrices of type H in (94) allows to handle all matrices together by a common
polynom coefficient vector c.

<
1

imax

imax∑
i=1

Hi c , c >
?
≈ 0

If such a vector with the involved roots exist, the ensemble starting with different start
vectors or parameters can be compared with respect to a common decomposition. The
approximative spectrum is common to all sets. The respective eigenvectors follow from the

common spectrum by multiplication of the 1
wl(λl)

[
wl
0

]
with the individual approximative

measurements Gi
modes. This enables for extraction of common relevant features of ensemble

calculations.

5.4.4 Koopman eigenfunctions

The finite approximative decomposition (96)

N0 3 k 7→ gk (q) =

p∑
l=1

vl (q) λ k
l (101)

allows us to calculate Koopman eigenfunctions for this approximative sequence. Remember
gfk (q) = f

(
ϕkq
)

in (72) and the number of essential roots p. This describes the iterative
development with respect to index k of all observables in S by modes λl (Ritz values), which
are common for different starting values q and observables f . We have given an computable
estimation of the error.

D1.1: Internal report on formulation of ExaFLOW algorithms 45

Rewriting equation (72) by stacking (0 : p) subsequent elements leads to
gk (q)
gk+1 (q)

...
gk+p (q)

 =

p∑
l=1

vl (q) λ0

l

vl (q) λ1
l

...
vl (q) λpl

λ k
l =

p∑
l=1

vl (q)

λ0
l

λ1
l
...
λpl

λ k
l (102)

Multiplying from the left by a vector u∗ =
w∗i

wi(λi)
d∗, where wi is the same polynom

coefficient vector of degree p − 1 as in (95) with wi (λl) = 0 ∀ l 6= i and di is an arbitrary
vector, this transforms the decomposition to the action on the single mode i

u∗i

gk (q)
gk+1 (q)

...
gk+p (q)

 =

p∑
l=1

d∗i vl (q)
wi (λl)

wi (λi)
λ k
l = d∗i vi (q)λ

k
i (103)

Returning back to the definition (72) of gfk (q) = f
(
ϕkq
)

u∗i

f
(
ϕk ◦ ϕ q

)
f
(
ϕk+1 ◦ ϕ q

)
...

f
(
ϕk+p ◦ ϕ q

)
 = d∗i vi (q)λ

k+1
i = λiu

∗
i

f
(
ϕkq
)

f
(
ϕk+1q

)
...

f
(
ϕk+pq

)
 (104)

showing, that u∗i
[
f ◦ ϕk+j

]
j=0,··· ,p is a Koopman eigenfunction for the eigenvalue λi on the

trajectories starting with q ∈ Q. Given eigenvalues λi this does not dependent on q ∈ Q
nor on f . Remarkably, the eigenfunction is composed by the values only on the specific
trajectory belonging to q ∈ Q. Because di is an arbitrary vector, the eigenspace belonging
to λi is as large as the dimension of the linear space generated by the observables f ∈ S.

5.4.5 How to realize the Koopman related Dynamic Modes approach?

The covariance matrix H = GTG has to be calculated together with its spectrum and
partially also with the eigenvectors. They may also serve as decomposition vectors for POD.
The matrix is relatively small, as the diagonal is given by the number of analysed time steps.
But the calculation might be very time consuming and expensive. Because the stiffness
of the product matrix is much higher than the stiffness of the singular values of G, it is
reasonable to calculate the singular value decomposition of G as for the original DMD or to
calculate the QR-decomposition of G. For very large problems with many grid points this
might be too time consuming. In these cases approaches by iterative techniques as Arnoldi
procedures could be investigated. In any case parallel input and output in combination with
the algorithms to get and to use the data is important and will be investigated.

D1.1: Internal report on formulation of ExaFLOW algorithms 46

5.4.6 Summary

We have described algorithms and their mathematical background generalizing the Dynamic
Modes Decomposition of ([34]) with a clear relation to eigenfunctions of an appropriate
Koopman operator and showed how to handle ensembles and have taken first steps for
implementing the necessary procedures.

6 Task 1.5: Fault tolerance and resilience (EPFL)

6.1 Overview

Resilience to faults has been identified as being critical for future exascale HPC systems. The
techniques needed to achieve a thousand fold increase in computational capacity expected
over the next decade, are predicted to also increase the rate of faults on large systems. This
poses substantial new challenges in terms of how to effectively use the machines, and how
to assess and assure the correctness of numerical simulation results.

Solving time dependent PDEs is often done in a methods-of-line approach where spatial
derivatives are discretized in some appropriate manner to create a system of coupled ODEs
to be integrated in time. The approach extends trivially to distributed memory machines
by application of domain decomposition, letting adjacent nodes communicate boundary in-
formation between time-steps. A key limitation of this approach lies in the strong scaling
limit. As spatial sub-domains decrease in size, nodes will increasingly be spending time
on communicating boundary information rather than computing. With the large machines
comprising thousands of nodes available to research today, this is a substantial bottleneck
in scaling applications efficiently, clearly new algorithmic developments are required.

A potential path to increased parallelism in the solution procedure is to attempt parallel
time-integration. Through the methods-of-lines approach this problem is traditionally viewed
as a sequential process. However, various attempts of extracting parallelism in this otherwise
traditionally sequential procedure do exist. These algorithms borrows ideas from spatial
domain decomposition to construct an iterative approach for solving the temporal problem
in a parallel global-in-time approach.

In the context of parallel integration techniques, the issue of algorithmic resilience is
of particular relevance since methods of parallel integration are developed primarily with
the focus of extracting parallelism in the solution of PDEs beyond what is possible using
standard domain decomposition techniques. Challenges in addressing faults at exascale
computing include faults caused by malfunctioning hardware. These are typically placed
into two overall categories, soft and hard node errors. A significant source of soft errors
arises from energetic particles interacting with the silicon subtract, causing either flipped
states of a storage element or disruption of the operation of a combinational logic circuit.
Such events may lead to a silent data corruption (SDC), i.e., no warning or exception is
raised but data has been corrupted. Depending on the location of the SDC, it may lead to
an event that over the course of many compute cycles turns into a hard error. Hard errors
are faults that lead to the complete failure of a node. For current parallel applications based

D1.1: Internal report on formulation of ExaFLOW algorithms 47

on MPI, the approach for dealing with the loss of a process is to kill all remaining processes
and restart the application at nearest check-point. This approach is costly as many modern
clusters now scale to thousands of nodes, the I/O cost of a check-point/restart procedure
may be prohibitively costly. Ideally, a local failure should permit local recovery. Unlike
hard errors, soft errors have the potential to corrupt computer simulations in ways that
may not be immediately obvious to the domain scientist or engineer relying on them as
part of their work. The typically attitude towards SDC resilience is to assume that errors
are so rare that they may as well be ignored, favoring the simple solution of doing a re-
run if the computational output looks questionable. This approach raises questions on the
trustworthiness of numerical simulations performed. In addition it is worth noting that both
the cost of an SDC induced re-run and the probability of needing such a re-run scales linearly
with the size of the machine, therefore, this simple approach may not be acceptable on future
exascale systems.

The goals of this effort withing the ExaFLOW effort can separated into a few categories:

1. Development an understanding of how to improve existing algorithms to enhance re-
silience to both hard and soft errors, including investigations of future support for fault
detection and handling through MPI 4.0.

2. Development and analysis of fault detection and recovery in complex iterative solvers,
with multiple right hand sides. This will serve as a prototype for the development of
resilient linear and nonlinear solvers in complex PDE solvers such as those considered
in ExaFLOW.

3. Investigation of sensitivities and critical resilience in complex PDE solvers, e.g., some
information such as geometry information must clearly be safe while others parts of
the algorithm such as the pre-convergence iterates are less critical as they can be re-
generated. Having a thorough understanding of this is critical to propose an efficient
strategy for ensuring resilience of a large scale production code.

6.2 Progress update

We have investigated fault tolerance and techniques for resilience within the context of
parallel-in-time methods.

To present the method, consider the problem{
∂u
∂t

+A (t,u) = 0

u (T0) = u0 t ∈ [T0, T]
(105)

where A : R× V → V ′ is a general operator depending on u : Ω× R+ → V with V being a
Hilbert space and V ′ its dual. Now, assume there exists a unique solution u (t) to (105) and
decompose the time domain of interest into N individual time slices

T0 < T1 < · · · < TN−1 < TN = T. (106)

D1.1: Internal report on formulation of ExaFLOW algorithms 48

Let Tn = ∆Tn with n ∈ N. We now define a numerically accurate solution operator F∆T

which for any t > T0 advances the solution as

F∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T) (107)

To solve (105) on [T0, T0 +N ·∆T] we define MF , Ū and Ū0 as operators on the form

MF =

1

−FT0∆T

. . .

.

−FTN−1

∆T 1

 (108)

with Ū = [U0, . . . ,UN] and Ū0 = [u (T0) , 0, . . . , 0]. The sequential solution procedure is
then equivalent to solving MFŪ = Ū0 for Ū to recover U0 · · ·UN as approximations to
u(T0) · · ·u(TN) by forward substitution. The lower bi-diagonal nature of (108) express the
explicit and local nature of the approach. If we instead seek to solve the system using a point-
iterative approach i.e., we seek the solution on form Ūk+1 = Ūk +

(
Ū0 −MFŪk

)
, we observe

that at the beginning of each iteration Ūk is known, allowing that in each iteration we may
compute FT1∆T · · · F

TN
∆T on all intervals in parallel. Note that the computational complexity

of every iteration is strictly larger than that of the sequential solution procedure, so reduced
time to solution is possible only if the number of iterations kconv needed for convergence is
much smaller than the number of time sub-domains N .

A question that remains open is what would be an appropriate preconditioner to accel-
erate the iteration. A typical approach is to create an approximation MG ≈ MF , where
MG is cheap to apply, hence allowing us to solve the preconditioned system (MG)

−1MFŪ =
(MG)

−1 Ū0. In the case considered here, we can readily create such an MG by defining a new
operator G∆T as

G∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T) (109)

and relax the requirements on the accuracy of G∆T , by using a coarser grid or a different
numerical model. Solving the system using a standard preconditioned Richardson iterations,
one recovers

Ūk+1 = Ūk + (MG)
−1 (Ū0 −MFŪk

)
(110)

We can write this as
1

−GT0∆T

. . .

.

−GTN−1

∆T 1

Uk+1
0

Uk+1
1
...

Uk+1
N

 =

1

FT0∆T − G
T0
∆T

. . .

.

FTN−1

∆T − GTN−1

∆T 1

(111)

D1.1: Internal report on formulation of ExaFLOW algorithms 49

to recover the Parareal algorithm in the form that it is typically presented

Uk+1
n+1 = GTn∆TUk+1

n + FTn∆TUk
n − GTn∆TUk

n (112)

with U0
n+1 = GTn∆TU0

n and Uk
0 = u(T0). Other parallel-in-time methods may be derived by

simply constructing a new preconditioner for the system (108). Unlike parallel RK methods,
this class of time parallel methods have no inherent upper limits to the parallelism that
may be extracted. In this paper, we focus the analysis and implementation on the Parareal
algorithm where the preconditioner have the same lower bi-diagonal structure as the matrix
MF . However, similar fault-tolerant implementations may be constructed for other fixed-
point iteration type time-parallel domain-decomposition methods.

To enhance the resilience of the parareal method, we have pursued two different ap-
proached, aiming at hard and soft errors, respectively.

The Parareal correction (112) may be implemented in different ways. The simplest
approach is to divide work into two phases; a purely sequential phase, computing Uk+1

n+1

from GTn∆TUk+1
n with the correction (112), and a parallel phase where FTn∆TUk

n is computed in
parallel on n ∈ N nodes. Ideally, the wall-time TG for a node group to compute GTn∆TUk+1

n is
much smaller than the wall-time TF to compute FTn∆TUk

n, and the limiting factor in obtainable
speed-up will be the number of iterations kconv < N needed for convergence. In practice
however, it is seldom possible to construct a coarse operator GTn∆T so computationally cheap
that its cost may be ignored. Fortunately, there exists many other ways for scheduling the
computational work than having two strictly separated phases, switching between computing
GTn∆TU sequentially and FTn∆TU in parallel. For example, GT0∆TU0

0 and FT0∆TU0
0 may be computed

concurrently. By exploiting such independencies, it is possible, to some extend, to mitigate
the effects of a relatively expensive coarse operator GTn∆T .

We have developed a new scheduler that uses features of the UFLM MPI framework to
build a fault tolerant algorithm. Here idle node-groups may be used as spares for the event
that an active node-group fails.

We have extended the Parareal algorithm to make SDC resilience an integral part of the
algorithm, regardless of the SDC resilience properties of the underlying operators F4T and
G4T . The new algorithm preserves the nice feature, that the algorithm may be wrapped
around previous code, only with the possible need for the addition of an interpolation or
projection to map between the spaces on which F4T and G4T operates.

In building an SDC resilient algorithm for iterative methods, it is natural to look at
the difference between consecutive iterations to detect whether or not an SDC-type error
occurred. As presented in the introduction, Parareal is in essence also a fixed point iteration,
but with a non-normal iteration matrix, the elements of which are potentially non-linear
operators. Since the upper bound on parallel efficiency of the algorithm scales as 1/kconv, we
find it reasonable to assume that for any practical application, GTn∆T is constructed sufficiently
close to FTn∆T so that the iteration matrix will remain a contraction on Uk

n from k = 0 and
onwards. Due to the special structure of the iteration matrix (110), we may construct a
local approach without the need for a synchronization between iterations. First, define the

D1.1: Internal report on formulation of ExaFLOW algorithms 50

residual between two consecutive iterations on the node-group local time sub-domain n as

ek+1
n =

∥∥Uk+1
n −Uk

n

∥∥
∞ (113)

For an SDC resilient model, the above ek+1
n must be computed at iteration k+1 on each time

sub-domain n, and communicated along with converge, so that the node-group responsible
for the n’th time sub-domain at the k + 1’th iteration can access ek+1

i ∀i ∈ 1 . . . n. Then, if
at any iteration for any time sub-domain

max
i=0...n

ek+1
n ≥ β max

i=0...n
ekn (114)

is true, we reject Uk+1
n and replace it with

Uk+1
n = Uk−1

n , ek+1
n = ek−1

n (115)

where β ≤ 1 is an upper bound to the contraction factor. If no upper bound is available,
using β = 1 appears to work well. To avoid stagnation due to false rejection, we reject the
previous two local iterates.

Extensive numerical examples confirm that the developed parareal approach, combining
careful scheduling and algorithmic innovation, achieves substantial improvements in fault
tolerance and resilience towards simulated error rates.

We refer to [28] for further details and numerical validation.

6.3 Outlook and future work

With the improved understanding of the MPI 4.0 supported features and ways to alter
existing algorithms to gain resilience, we are now ready to pursue the development of resilient
techniques for more complex iterative solvers, e.g., conjugate gradient solvers used within
Nektar++.

We will focus on the solvers for the Poisson equation but with a right hand side that is
simulated to be time-dependent - this mimics the situation in a time-dependent PDE solver.
Several developments are required to ensure resilience in such a scenario. On one hand, we
need a strategy to detect SDC errors - for this we will rely on local error estimators as an
indicated of corruption. At the same time, we need an understanding of which pieces of the
algorithm is most sensitive to corruption and guard these as well as establish a strategy for
’on-the-fly’ regeneration of critical parts, e.g., through the development of reduced complexity
models of the operators, solution and right hand side as needed.

This development will set the stage for transitioning the technology into Nektar++ and
evaluate the resilience of the large scale production model to simulated faults and, ultimately,
investigate fault tolerance on a leading computational platform.

7 Summary

The initial algorithmic developments made over the first part of the ExaFLOW project
have made a good start in understanding the key parts of each task. Collaboration between
partners is also now underway between various tasks, as described in the description of work:

D1.1: Internal report on formulation of ExaFLOW algorithms 51

• Coarse space preconditioners (tasks 1.1.1b and 1.3.3): KTH and ICL will attempt
to evaluate the use of the KTH AMG developments in Nektar++ for unstructured
grids. ICL and EPFL have also been communicating regarding the use of multi-level
preconditioners for the HDG trace space system.

• Error estimation (tasks 1.1.3c and 1.2.1): SOTON will investigate the applicability of
the spectral error estimation method used by KTH in their developments.

• p and r-refinement: ICL will investigate potential for using this technology in unstruc-
tured meshes alongside KTH’s development.

• Resilience (task 1.5.3): ICL/EPFL will now start to look at development of algorithms
for conjugate gradient solve, as mentioned in the task 1.5 summary. Representatives
from EPFL and McLaren Racing Ltd recently visited ICL to discuss this topic in
detail and devise potential strategies for the recovery from hard errors in the conjugate
gradient solve, which is now undergoing development.

The focus of each of the partners is to now move towards more concrete implementations
that can be undertaken in WP2 and then evaluated using the challenging test cases in WP3.

D1.1: Internal report on formulation of ExaFLOW algorithms 52

References

[1] Nek5000. http://nek5000.mcs.anl.gov/.

[2] Ravishankar Balasubramanian and James C. Newman. Adjoint-based error estimation
and grid adaptation for functional outputs: Application to two-dimensional, inviscid,
incompressible flows. Computers & Fluids, 2009.

[3] T. Bruylants, A. Munteanua, and P. Schelkensa. Wavelet based volumetric medical
image compression. Signal Processing: Image Communication, 31:112–133, 2015.

[4] M. Budǐsić, R. Mohr, and I. Mezić. Applied Koopmanisma). Chaos, 22(4):047510,
December 2012.

[5] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia,
S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin. Nektar++: An open-
source spectral/hp element framework. Computer Physics Communications, 192:205–
219, 2015.

[6] Vincenzo Citro. Unsteady and three-dimensional fluid dynamic instabilities. PhD thesis,
University of Salerno, 2015.

[7] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified Hy-
bridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for
Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319–
1365, 2009.

[8] David L. Darmofal and David A. Venditti. Grid adaptation for functional outputs:
Application to two-dimensional inviscid flows. Journal of Computational Physics, 2002.

[9] Kaihua Ding, Krzysztof J. Fidkowski, and Philip L. Roe. Continuous adjoint based
error estimation and r-refinement for the active-flux method. In 54th AIAA Aerospace
Sciences Meeting, 2016.

[10] M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multires-
olution image representation. IEEE Transactions on Image Processing, 14:2091–2106,
2005.

[11] T. Eisner, B. Farkas, M. Haase, and R. Nagel. Operator Theoretic Aspects of Ergodic
Theory. Berlin, Springer, 2015.

[12] D. Ekelschot, D. Moxey, S.J. Sherwin, and J. Peiro. A p-adaptation method for com-
pressible flow problems using a goal-based error indicator. Special Issue Computers &
Structures (submitted), 2016.

http://nek5000.mcs.anl.gov/

D1.1: Internal report on formulation of ExaFLOW algorithms 53

[13] Kenneth Eriksson, Don Estep, Peter Hansbo, and Johnsonm Claes. Introduction to
adaptive method for diffential equations. Acta Numerica, pages 1–54, 1995.

[14] K. J. Fidkowski and P. L. Roe. An entropy adjoint approach to mesh refinement. SIAM
Journal on Scientific Computing, 2010.

[15] Krzysztof J. Fidkowski and Philip L. Roe. Entropy-based mesh refinement, i: The
entropy adjoint approach. In 19th AIAA Computational Fluid Dynamics, 2009.

[16] Michael B. Giles and Niles A. Pierce. An introduction to the adjoint approach to design.
Flow, Turbulence and Combustion, 2000.

[17] Robert M. Kirby, Spencer J. Sherwin, and Bernardo Cockburn. To CG or to HDG: A
comparative study. Journal of Scientific Computing, 51(1):183–212, 2011.

[18] B. O. Koopman. Hamiltonian Systems and Transformations in Hilbert Space. Proceed-
ings of the National Academy of Science, 17:315–318, May 1931.

[19] Gerald W. Kruse. Parallel Nonconforming Spectral Element Solution of the Incom-
pressible Navier-Stokes Equations in Three Dimensions. PhD thesis, Brown University,
1997.

[20] Yi Li. Automatic Mesh Adaptation Using the Continuous Adjoint Approach and the
Spectral Difference Method. PhD thesis, Stanford University, 2013.

[21] James William Lottes. Towards Robust Algebraic Multigrid Methods for Nonsymmetric
Problems. PhD thesis, University of Oxford, 2015.

[22] Yvon Maday, Catherine Mavriplis, and Anthony Patera. Nonconforming mortar element
methods: Application to spectral discretizations. In Proceedings of the 2nd International
Conference on Domain Decomposition Methods, pages 392–418, 1988.

[23] D. Marpe, V. George, H. L. Cycon, and K. U. Barthel. Performance evaluation of
Motion JPEG-2000 in comparison with H.264/AVC operated in pure intra coding mode.
In Wavelet Applications in Industrial Processing, pages 129–137. SPIE Press, October
2003.

[24] Catherine Mavriplis. Nonconforming Discretizations and a Posteriori Error Estima-
tors for Adaptive Spectral Element Techniques. PhD thesis, Massachusetts Institute of
Technology, 1989.

[25] Catherine Mavriplis. A posteriori error estimators for adaptive spectral element tech-
niques. In Peter Wesseling, editor, Notes on Numerical Fluid Mechanics, pages 333–342,
1990.

[26] Catherine Mavriplis. Adaptive mesh strategies for the spectral element method. Com-
puter methods in applied mechanics and engineering, 116:77–86, 1994.

D1.1: Internal report on formulation of ExaFLOW algorithms 54

[27] D. Scott McRae. r-refinement grid adaptation algorithms and issues. Comput. Methods
Appl. Mech. Engrg., 2000.

[28] A. S. Nielsen and J. S. Hesthaven. Fault tolerance in the parareal method. In 25th
ACM Parallel and Distributed High Performance Computing, June 2016.

[29] Nicolas Offermans, Oana Marin, Michel Schanen, Jing Gong, Paul Fischer, Philipp
Schlatter, Aleks Obabko, Adam Peplinski, Maxwell Hutchinson, and Elia Merzari. On
the strong scaling of the spectral element solver nek5000 on petascale systems. In In-
ternational Conference on Exascale Applications and Software, EASC 2016, Stockholm,
Sweden, 2016.

[30] K. Ou and A. Jameson. Unsteady adjoint method for the optimal control of advection
and burgers equations using high order spectral difference method. In In 49th AIAA
Aerospace Sciences Meeting, 2011.

[31] Niles A. Pierce and Michael B. Giles. Adjoint recovery of superconvergent functionals
from pde approximations. SIAM REVIEW, 42(2):247–264, 2000.

[32] R. Sakai, H. Onda, D. Sasaki, and K. Nakahashi. Data compression of large-scale flow
computation for aerodynamic/aeroacoustic analysis. In 49th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition, pages 112–133.
AIAA, January 2011.

[33] J. Schmalzl. Using standard image compression algorithms to store data from compu-
tational fluid dynamics. Computers and Geosciences, 29:1021–1031, 2003.

[34] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Jour-
nal of Fluid Mechanics, 656:5–28, July 2010.

[35] H. M. Tufo and P. F. Fischer. Fast parallel direct solvers for coarse grid problems. J.
Parallel and Distributed Computing, 61:151–177, 1997.

[36] Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A data–driven
approximation of the koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[37] Matthew Willyard. Adaptive Spectral Element Methods To Price American Options.
PhD thesis, The Florida State University, 2011.

[38] Gang Xu, Bernard Mourrain, Regis Duvigneau, and Andre Galligo. Parameterization
of computational domain in isogeometric analysis: Methods and comparison. Comput.
Methods Appl. Mech. Engrg., 2011.

[39] Lala Yi Li, Yves Allaneau, and Anthony Jameson. Continuous adjoint approach for
adaptive mesh refinement. In 20th AIAA Computational Fluid Dynamics Conference,
2011.

	Introduction
	Task 1.1: Mesh quality and grid adaptivity (KTH)
	Objective of this task
	Background
	A posteriori local error estimator
	Refinement criteria
	Refinement techniques
	Coarse grid solver

	Summary of progress and outlook

	Task 1.2: Error control for heterogeneous modelling (SOTON)
	Overview
	Progress update
	Outlook and future work

	Task 1.3: Mixed CG-HDG formulation (IC)
	Objective of this task
	Background formulation of the HDG method
	Local formulation of the HDG method
	Global formulation
	Matrix form
	Combined Continuous-Discontinuous Formulation

	Continuous-Discontinuous Solver
	Hybrid Formulation for Continuous Galerkin Method
	Global Equation for Trace Variable

	Summary of progress and outlook

	Task 1.4: Data reduction (USTUTT)
	Introduction
	Comparative study on compression techniques
	Methodology
	Compression Algorithms
	Results
	Summary of progress and outlook

	SVD
	Description of the method
	Outlook

	Dynamic Mode Decomposition
	Analysis
	Simplified approach
	Ensembles
	Koopman eigenfunctions
	How to realize the Koopman related Dynamic Modes approach?
	Summary

	Task 1.5: Fault tolerance and resilience (EPFL)
	Overview
	Progress update
	Outlook and future work

	Summary

