
H2020 FETHPC-1-2014

Enabling Exascale Fluid Dynamics Simulations
Project Number 671571

D1.2 - Initial proof-of-concept formulation of

ExaFLOW algorithms

WP1: Algorithmic improvements towards exascale

Copyright c© 2017 The ExaFLOW Consortium

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

Ref. Ares(2017)1732337 - 31/03/2017

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 2

DOCUMENT INFORMATION

Deliverable Number D1.2
Deliverable Name Initial proof-of-concept formulation of ExaFLOW algorithms
Due Date 31/03/2017 (PM 18)
Deliverable lead KTH
Authors David Moxey (Imperial)

Chris Cantwell (Imperial)
Martin Vymazal (Imperial)
Nicolas Offermans (KTH)
Adam Peplinski (KTH)
Niclas Jansson (KTH)
Philipp Schlatter (KTH)
Christian T. Jacobs (SOTON)
Neil Sandham (SOTON)
Björn Dick (USTUTT)
Jing Zhang (USTUTT)
Uwe Küster (USTUTT)
Patrick Vogler (USTUTT)
Ulrich Rist (USTUTT)
Nielsen Allan Svejstrup (EPFL)
Jan Hesthaven (EPFL)

Responsible Author David Moxey (Imperial)
e-mail: d.moxey@imperial.ac.uk

Keywords exascale algorithms, scalability, modelling, input/output
WP WP1
Nature R
Dissemination Level PU
Final Version Date 31/03/2017
Reviewed by Nick Johnson (UEDIN)

Niclas Jansson (KTH)
Erwin Laure (KTH)

MGT Board Approval 31/03/2017

d.moxey@imperial.ac.uk

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 3

DOCUMENT HISTORY

Partner Date Comment Version
Imperial 25/01/2017 Initial version with task 1.3 0.1
SOTON 03/02/2017 Add contribution to task 1.2 0.2
KTH 23/02/2017 Add contribution to task 1.1 0.3
USTUTT 24/02/2017 Add contribution to task 1.4 0.4
EPFL 26/02/2017 Add contribution to task 1.5 0.5
Imperial 17/03/2017 Corrections from KTH and UEDIN 0.6

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 4

Executive Summary

In this deliverable, we will outline the current proof-of-concept algorithms that are being
developed by the work package 1 (WP1) ExaFLOW partners, and highlight progress made
during the first half of the project. The goals of the report are to:

• describe the efforts of WP1 partners in extending the current state-of-the-art algo-
rithms that have already been outlined in deliverable 1.1 (D1.1);

• summarise progress made in achieving the goals of each of the WP1 tasks, and how
they apply to current and expected developments in WP2 and WP3;

• look ahead to further progress in each of the WP1 tasks, highlighting a work plan for
each partner towards the project conclusion.

The introduction summarises the aims and contributions of WP1 within ExaFLOW and
gives a brief overview of the tasks being undertaken in this work package. Progress on each
of the tasks is then outlined in detail in the rest of the document. We conclude this summary
with an overview of progress on each of the tasks:

• Mesh quality and grid adaptivity: The aim of this task is to develop novel adap-
tive mesh refinement techniques for exascale flow simulations. This takes the form of
refinement in terms of element size (h), element locations (r) and polynomial order
(p). Across the first half of the project, substantial progress has been made in develop-
ing both the mechanisms for achieving highly-parallel h-adaptive simulations, and in
examining a range of error estimators in order to drive the adaptive process, refining
or coarsening the underlying mesh in order to better capture flow structures.

The development of these h-adaptive processes has focused around algorithms based
on a nonconformal mesh. This has advantages both in terms of potential for parallel
scalability (thus making it suited to exascale simulations), geometric flexibility and
numerical conditioning of the underlying system, as nonconformal meshes will reduce
the aspect ratio of elements. However, in order to develop these methods, careful
consideration must be given to both the elemental connectivity, as well as the coarse
space and overlapping Schwarz preconditioners that are used to address the challenges
of efficiently solving the pressure Poisson equation. These issues have been the focus
of much of the effort in WP1, and are outlined in detail in this deliverable.

With a strategy identified to achieve a scalable and parallel mesh refinement, our other
efforts have focused around developing methods to drive this adaptive process, so that
adaption can be targeted in areas of the simulation where underresolution occurs, in
order to more accurately model the flow dynamics. Two types of error indicators and
estimators are being developed, and are outlined in this document. The first is a local
(elemental) a posteriori error indicator, which is based on the expected decay rates
of an expansion of spectral coefficients. The efficacy of this indictor is studied in the
context of a number of examples, and its local nature makes it inherently scalable at

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 5

large processor counts. The second error estimator is currently under development,
and is based around a goal-based adjoint procedure, which yields a more accurate
estimation of the error throughout the domain, albeit at a higher computational cost.

In summary, this task is proceeding well. Future efforts in the short term will aim
to further develop algorithms for error detection based on the adjoint solver, before
applying these to the incompressible NACA4412 airfoil in WP3.

• Error control for heterogeneous modelling: The aim of this task is to leverage
a heterogeneous approach to fluid simulations, whereby different models are used in
different regions of the domain depending on the level of detail required, which will
reduce the computational effort required and increase scalability. A key component
of this algorithm is developing techniques for error indication, to highlight where the
grid or model can be coarsened or refined appropriately within the domain to adapt to
the flow dynamics. In this deliverable we examine two error indicators that have been
developed as part of this task, based on performing small-scale Fourier transformations
and examining the resultant energy spectrum. These are then applied to a canonical
Taylor-Green vortex breakdown at various levels of resolution in order to validate the
proposed error indicators.

Progress on this task has been good in the period since deliverable 1.1, however was
somewhat limited in the initial phases of the project due to late staff appointments.
More effort has also necessarily been exerted in the initial phases of the project as part
of WP2 to develop parts of the OpenSBLI code, which will provide a better platform
in which to further develop the heterogeneous modelling of WP1. Future plans in this
task are, in the short term, to further develop and validate the error indicators, by
applying them to the compressible NACA4412 aerofoil case in WP3.

• Mixed CG-HDG discretisation: The aim of this task is to develop a new, mixed
finite element discretisation for elliptic problems, whereby the compact properties of the
continuous Galerkin method are combined with the pairwise communication property
of the hybridisable discontinuous Galerkin method in order to exploit the heterogeneous
nature of inter- and intra-node computing to improve strong scaling at exascale. Across
the first half of the project, good progress has been made in developing a new weak
Dirichlet boundary condition. This is required for the weak imposition of the solution
between nodes. This deliverable presents the development and validation of this for
the solution of elliptic problems, and their application to both a Poisson equation
and simulations of the incompressible Navier-Stokes equations. We examine this novel
development in the context of existing techniques for weak imposition of Dirichlet
conditions, in which the method developed here provides a significant advantage in a
nearly parameter-free manner.

The second half of the work presented in this deliverable outlines the anticipated per-
formance of the mixed CG-DG discretisation for both two- and three-dimensional sim-
ulations. This examines in more detail the second half of the CG-HDG algorithm:

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 6

namely, the computational cost of solving the matrix system which allows us to ob-
tain a solution between nodes. We hoped to exploit the known block structure of this
matrix in order to keep the cost in comparable to classical CG solve in one partition.
The reduced communication would then still ensure favorable scaling and wall clock
times. When doing the cost analysis of the CG-DG algorithm, however, we found out
that the assembly and solution of the global system for the inter-node variable incurs
significantly larger asymptotic cost. This means that, although the strong scaling of
this method would indeed be greatly improved, it would come at the cost of significant
additional runtime when compared to the CG or HDG methods.

Although this task has therefore lead to the development of a significant new bound-
ary condition implementation, in light of our performance analysis, we feel that further
modelling of the computational costs are required before progressing to a full imple-
mentation of the method. In particular, in the context of exascale hardware, in which
FLOPS and memory bandwidth are expected to significantly increase and be readily
available, we feel that a model that can incorporate both communication costs and
the balance of FLOPS and memory bandwidth will be of more use in guiding further
decisions on this task. However, should these studies demonstrate that the CG-HDG
formulation is unlikely to yield the appropriate performance benefits, in terms of time
to compute over existing formulations, we have identified a number of areas that align
with both the goals of the project and the objective of increasing strong scaling in this
task, which we outline in this deliverable.

• Data reduction: The aim of this task is to develop data-reduction techniques specific
to CFD. This is key for exascale simulations, since input/output (I/O) is expected to
prove a large bottleneck. Algorithmic developments are therefore required in order
to reduce the amount of data needed to be stored as the simulation runs. In this
deliverable we present results from the first half of the project, in which two lines of
research have been undertaken.

The first has examined the use of image compression techniques, specifically JPEG-
2000, in the lossy and lossless compression of flow data. Our developments thus far
show that lossy compression, where we adopt fixed-point number format to normalise
the underlying floating-point data of the flow field, can provide substantial data reduc-
tion savings. In particular, we have examined a three-dimensional turbulent flat-plate
simulation at two Mach numbers, wherein compression ratios of 17:1 and 15:1 have
been observed. Whilst this provides a good route to reduce data overhead for visu-
alisation purposes, the resulting data set could not be used to, for example, restart a
fluid simulation from a checkpoint. We have therefore investigated lossless compres-
sion techniques, based on a shape-adaptive discrete wavelet transformation. However
thus far, this method has not proven effective, due to the underlying representation
of the floating-point data type. Our future work will therefore shift to investigate
other motion-compression techniques, specifically the High Efficiency Video Coding
Standard (HEVC), as well as higher order signal transforms.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 7

The second class of techniques we are investigating focus on reduced-order modelling
techniques, specifically singular value decomposition (SVD) and dynamic mode decom-
position (DMD), which may be used to extract and store only the key flow features
and may offer very substantial data reduction savings at larger scales. Presently, due
to the more experimental and complex nature of these techniques (when compared to
the more well-established image and motion compression techniques considered pre-
viously), this work is still in the exploratory stages, with prototype implementations
written for serial codes. Our future work in the second half of the project will therefore
focus initially on the assessment of these different decomposition techniques, alongside
their parallel implementation as part of WP2.

• Fault tolerance and resilience: The final task in this WP considers developing
numerical techniques that are resilient to hardware errors, both soft (e.g. memory cor-
ruption) and hard (e.g. node failures). At exascale levels of parallelism, it is expected
that such errors are likely to occur on the frequency of a few minutes, based on the
expected time to failure of current computing hardware.

Significant advances have been made in the first half of the project in terms of de-
veloping prototype techniques to mitigate hard errors. These are based on a diskless
checkpoint-based approach, where node recovery is accomplished by restoring data
from in-memory checkpoints that are communicated at regular frequencies to neigh-
bouring nodes during the simulation. A major accomplishment in this task is the
development of a prototype solver within the Nektar++ framework, which we outline
in this deliverable. This uses proposed user-level failure mitigation (ULFM) extensions
to the MPI communication framework in order to notify the nodes when a rank failure
occurs during a simulation. This prototype solver, based on a diffusion equation, has
been tested to correctly recover the computation when a node fails. This demonstrates
the efficacy of the proposed checkpointing algorithm on a problem which can be seen
as the core building block of more complex equations, such as Navier-Stokes.

The next phase of the project will involve the investigation of more sophisticated error-
correction routines, which we describe further in this deliverable. We will additionally
extend the existing methods from the prototype solver into the Navier-Stokes solver,
allowing us to test the effectiveness of these schemes on larger-scale problems being
investigated as part of WP3.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 8

Contents

List of Figures 9

Abbreviations 13

1 Introduction 14

2 Mesh quality and grid adaptivity 15
2.1 Efficient pressure preconditioner for nonconforming meshes 15

2.1.1 Navier-Stokes discretisation . 16
2.1.2 Additive Schwarz method . 17
2.1.3 Adaptation for nonconforming meshes 18

2.2 A posteriori spectral error indicators . 22
2.2.1 Step 1: Compute the spectral coefficients 23
2.2.2 Step 2: Compute the truncation error 23
2.2.3 Step 3: Compute the quadrature error 24
2.2.4 Step 4: Add both error terms . 24
2.2.5 Validation . 24

2.3 Adjoint error estimators . 25
2.3.1 Step 1: Solve the Navier-Stokes equations 28
2.3.2 Step 2: Express the functional of interest 28
2.3.3 Step 3: Solve the linearized adjoint Navier-Stokes equations 28
2.3.4 Step 4: Adjoint error estimators . 29

2.4 Summary of progress and outlook . 30

3 Error control for heterogeneous modelling 31
3.1 Error indicators . 32

3.1.1 Step 1: Hamming window . 32
3.1.2 Step 2: Fourier amplitude reconstruction 32
3.1.3 Step 3: Error severity values . 32

3.2 Validation . 33
3.3 Outlook and future work . 36

4 Mixed CG-HDG formulation 38
4.1 Formulation . 39

4.1.1 Local formulation of the HDG method 40
4.1.2 Global formulation . 40
4.1.3 Matrix form . 41

4.2 Combined Continuous-Discontinuous Formulation 42
4.2.1 Continuous-Discontinuous Solver . 43
4.2.2 Convergence rates comparison: weak vs. strong boundary conditions 45

4.3 Weak Dirichlet boundary conditions: benefits and applications 47
4.3.1 Comparison against alternative methods 47

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 9

4.3.2 Applications in the context of ExaFLOW WP3 test cases 48
4.4 Expected performance of the CG-DG scheme 49

4.4.1 Domain Description . 50
4.4.2 Stage I: Solution of Statically Condensed System 51
4.4.3 Cost of Solving the Statically Condensed System 52
4.4.4 Stage II: Interior Solve . 54

4.5 Summary and outlook . 54

5 Data reduction 56
5.1 Introduction . 56
5.2 JPEG-2000 . 58

5.2.1 Wavelet Transform . 59
5.2.2 Quantization . 61
5.2.3 Extensions . 61
5.2.4 Fixed Point Number Format . 62
5.2.5 Shape-Adaptive Discrete Wavelet Transform 63

5.3 SVD . 69
5.3.1 Description of the method . 69
5.3.2 Outlook . 71

5.4 Dynamic Mode Decomposition . 71
5.4.1 Analysis . 72
5.4.2 Simplified approach . 76
5.4.3 Ensembles . 76
5.4.4 Koopman eigenfunctions . 77
5.4.5 How to realize the Koopman related Dynamic Modes approach? . . . 78
5.4.6 Implementation and Experiences . 78

5.5 Conclusions and Future Work . 79

6 Fault tolerance and resilience 80
6.1 Check-pointing for Resilience . 81

6.1.1 SCR: Scalable Checkpoint/Restart for MPI 82
6.1.2 ULFM-MPI: User Level Failure Mitigation 83
6.1.3 Multi-level check-sum check-pointing in Nektar++ 83

6.2 Improving upon State-of-the-art . 84
6.2.1 Incomplete information recovery in under-determined check-sums . . 85
6.2.2 Uniqueness by minimizing the 1st order derivative 87
6.2.3 Uniqueness by minimizing distance with respect to inexact data . . . 89

6.3 Work-in-progress . 90

7 Summary 93

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 10

List of Figures

1 Exemplary shapes of the coarse base functions bi for the nonconforming meshes.
Note, the functions are nonzero in only one vertex corresponding to global
degree of freedom but can take any value at the hanging nodes. Element
boundaries are marked by black lines. 19

2 The mesh structure and the velocity magnitude of the 2D lid driven cavity
setup at time t = 140. Left and right panels present respectively conforming
and nonconforming setups. The element boundaries are marked with black
lines. 20

3 Total energy for the 2D lid driven cavity as a function of time. 20
4 Iteration count of the pressure solver as a function of time step for conforming

(red) and nonconforming (green) simulations. Left and right panels present
respectively 2D and 3D setups. 21

5 Iteration count of the pressure solver as a function of time step for noncon-
forming setups using different definitions of the local prolongation operator.
Left and right panels present respectively 2D and 3D setups. The left plot
shows as well results of the 3D conforming simulation for comparison. 22

6 Solution of the Kovasznay flow. The error is computed in the elements denoted
1 and 2. 25

7 Exact error and error indicator as a function of the polynomial order N for u
and v on elements 1 and 2. 26

8 Error indicators for a snapshot of the solution at a given time for the flow
past a cylinder at Re = 500. 27

9 Reconstructed Fourier amplitudes against increasing wavenumber, for a poorly-
resolved simulation (left) and a well-resolved simulation (right) of the Taylor-
Green vortex problem. The values are the mean amplitudes over all grid
points in a representative block in the domain. A minimal acceptable slope
of r = -0.5 has also been plotted. 31

10 The error severity at all error indicator blocks in a 323, 643, 1283 and 2563

grid (top-left to bottom-right), at t = 10.155. Blue, green, yellow and red
indicate Ii error severity values of 0, 1, 2 and 3, respectively. 34

11 The counts of all the error indicator values across the entire domain for 323,
643, 1283 and 2563 grids (top-left to bottom-right). Blue, green, yellow and
red indicate Ii error severity values of 0, 1, 2 and 3, respectively. 35

12 The counts of all the error indicator values across the entire domain for 323,
643, 1283 and 2563 grids (top-left to bottom-right), using overlapping blocks.
Blue, green, yellow and red indicate Ii error severity values of 0, 1, 2 and 3,
respectively. 36

13 Distribution of unknowns for continuous and discontinuous Galerkin methods. 39
14 Notation used throughout this section for elements and index mappings. . . 41
15 Decomposition of the domain into four macro-elements. Red lines denote the

skeleton or trace of the macro-elements on which λ is defined. 42

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 11

16 Convergence to the exact solution in L2 norm. 46
17 Comparison of different values of η for the Nitsche method in an L-shaped

domain of third-order tetrahedra. 47
18 The Poisson problem in the L-shaped domain of third-order tetrahedra, but

instead using the HDG weak boundary conditions with τ = 1. 48
19 Laminar solution with strong (left) and weak (right) boundary conditions for

velocity. 49
20 Idealized mesh divided into P ×P patches, each patch containing N1D

e ×N1D
e

elements of order p. 50
21 Interior edges (blue) within a patch. 51
22 Asymptotic of matrix-vector multiplication measured by operation counts for

HDG and combined CG-DG methods. 54
23 Stream-wise velocity field from a numerical simulation of a plate flow at

Reθ,0 = 300. 56
24 Dyadic decomposition into subbands for the streamwise velocity field of a

plate flow. 56
25 ROI mask generation in the wavelet domain. 57
26 3-Dimensional dyadic decomposition into subbands[6]. 58
27 Fundamental building blocks of the JPEG-2000 compression stage[52]. 59
28 Symmetric extension at the leading and trailing boundaries of a signal segment. 60
29 Uniform scalar quantizer with deadzone . 61
30 Numerical setup for the simulation of a flat plate flow at Ma∞ = 0.3 and

Ma∞ = 2.5[65]. 62
31 Original (a) and Compressed (b) DNS of a turbulent flat plate flow at Ma∞ =

0.3. Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration
of the isosurface according to the wall normal distance y[65]. 64

32 Close-up of the Original (a) and Compressed (b) DNS of a turbulent flat
plate flow at Ma∞ = 0.3. Flow structures identified by the λ2-criterion for
λ2 = −0.15. Coloration of the isosurface according to the wall normal distance
y[65]. 65

33 Original (a) and Compressed (b) DNS of a turbulent flat plate flow at Ma∞ =
2.5. Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration
of the isosurface according to the wall normal distance y[65]. 66

34 Close-up of the Original (a) and Compressed (b) DNS of a turbulent flat
plate flow at Ma∞ = 2.5. Flow structures identified by the λ2-criterion for
λ2 = −0.15. Coloration of the isosurface according to the wall normal distance
y[65]. 67

35 Evolution of the biased exponent and mantissa fields for a uniform sequence
of single precision IEEE 754 numbers . 68

36 Exponent field of the streamwise velocity from a numerical simulation of a
plate flow at Reθ,0 = 300. 68

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 12

37 Mantissa field of the streamwise velocity from a numerical simulation of a
plate flow at Reθ,0 = 300. 68

38 The form of SVD . 69
39 The SVD of matrices ATA . 70
40 HOSVD expansion of the 3-mode tensor . 71
41 shifted submatrices as part of the total matrix 77
42 A single checksum is created for red-line data stores on n = 12 nodes. The

data for bl = 5 nodes is removed. Exact recovery from the checkpoint is not
possible, but incomplete information recovery by solving the system (109) is
and yields the output as indicated by the black lines. 89

43 Incomplete information recovery using the iterative approach briefly outlined
at the end of section 6.2.3. Only the data lost, and to be recovered is depicted.
The black line indicates the original solution, and the blue line the recoveered
solution after 10 iterations. Here nc = 500 and nl = 1000. 91

44 nc = 10 checksums have been created for the black line data stored on n = 100
nodes. The data for nl = 20 nodes is removed. Exact recovery from the
checkpoint is not possible, but incomplete information recovery by solving the
optimization problem with constraint 111 and approximate data as indicated
by the red line. The output from the solution procedure is marked in green.
(a) full view. (b-c) zoomed in. 92

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 13

Abbreviations

AMR Adaptive Mesh Refinement
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy (condition)
CG Continuous Galerkin
DCT Discrete Cosine Transform
DMD Dynamic Mode Decomposition
DWT Discrete Wavelet Transform
DNS Direct Numerical Simulation
FLOPS Floating-Point Operations
GL Gauss-Legendre (quadrature rules)
GLL Gauss-Lobatto-Legendre (quadrature rules)
GMRES Generalised Minimal Residual Method
HDG Hybridisable Discontinuous Galerkin
HEVC High Efficiency Video Coding (Standard)
HPC High Performance Computing
I/O Input/Output
JPEG Joint Photographic Experts Group
Ma Mach number
PCG Preconditioned Conjugate Gradient
PDE Partial Differential Equation
POD Proper Orthogonal Decomposition
PSNR Peak Signal-to-Noise Ratio
Re Reynolds number
ROI Regions Of Interest
SA-DWT Shape-Adaptive Discrete Wavelet Transform
SEM Spectral Element Method
SPD Symmetric Positive Definite
WP Work Package

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 14

1 Introduction

Work package 1 (WP1) focuses on algorthmic development to overcome the main challenges
and objectives identified by the ExaFLOW project. Specifically, the work being undertaken
in this work package is designed to overcome key algorithmic bottlenecks that need to be
addressed before computational fluid dynamics (CFD) simulations can be undertaken at
exascale-level computing platforms. This work is split across five tasks, each of which is lead
by one of the five work package partners in collaboration with other partners.

• Task 1.1: Mesh quality and grid adaptivity
This task focuses on the challenge of developing scalable adaptive methods, where error
estimators drive an adaption process in order to make highly efficient use of large-scale
computational resources without a priori knowledge of the flow solution.

• Task 1.2: Error control for heterogeneous modelling
Will investigate the application of heterogeneous modelling to exascale, so that differ-
ent regions of the flow may be modelled with different approaches, thereby reducing
computational cost and increasing scalability. In particular, it will address the chal-
lenges that arise when considering the interfaces between two modelling zones, as well
as ensuring that the distribution of work across nodes is regulated according to the
variation of flow scales.

• Task 1.3: Mixed CG-HDG formulation
This task will investigate how to improve the scalability of state-of-the-art spectral
element methods and make them suitable for exascale computations by developing a
new mixed formulation based on continuous Galerkin (CG) and hybridisable discon-
tinuous Galerkin (HDG) discretisations, where each node performs a computationally
efficient CG solve, and combines this with a HDG system between nodes to minimize
communication costs.

• Task 1.4: Data reduction
The aim of this task is to reduce the amount of data that must be transferred from
memory to disks by using filters for structure extraction and data reduction, i.e. trans-
forming the large “raw” data to feature- or structure-based data which are orders of
magnitude more compact.

• Task 1.5: Fault tolerance and resilience
This focuses on the development of fault tolerant algorithms to ensure resilience to
hardware faults. Activities will address the development of suitable in-situ models and
strategies for detection of hardware faults. This will include both the development of
suitable error detectors (in collaboration with Task 1.1) and efficient data reduction
and model building, partly in collaboration with Task 1.4.

In the following sections, we give a detailed description of the work undertaken across the
first half of the project, and outline the current proof-of-concept algorithms being developed
by the ExaFLOW partners.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 15

2 Mesh quality and grid adaptivity

One of the major concerns in the numerical solutions of partial differential equations (PDEs)
is finding the optimal grid on which the solution can be computed. Unfortunately, in most
cases it is not an easy task that can be determined in advance, making space for self-adapting
algorithms like Adaptive Mesh Refinement (AMR). Its goal is to control computational
error during the simulation and to increase resolution in a particular region of the domain
only. It gives the possibility to increase the accuracy of numerical simulations at minimal
computational cost, but at the same time it increases solver complexity, which can have
negative effect on the code performance. That is why special care has to be taken to develop
efficient tools and algorithms that can be used within an AMR framework. In this section
we describe progress on developing three tools within WP1:

• adaptation of pressure preconditioners for nonconforming meshes for the Spectral El-
ement Method (SEM),

• spectral error indicators,

• adjoint error estimators.

2.1 Efficient pressure preconditioner for nonconforming meshes

We consider simulations of unsteady incompressible flows for which the sound speed is infi-
nite. In this case, the linear sub-problem associated with the divergence-free constraint can
become very ill-conditioned, making its solution the most expensive phase of the simulation
when using iterative solvers. Therefore, defining a robust parallel preconditioning strategy
has received much attention in past decades. In the context of SEM, two possible approaches
based on an additive overlapping Schwarz method [23, 24] and a hybrid Schwarz-multigrid
method [26, 43] were proposed and implemented in the Nek5000 code, giving significant
reduction of pressure iterations. In this context, h-type AMR framework can be advanta-
geous, as introducing nonconforming meshes can reduce the aspect ratio of elements, thereby
limiting the condition number of the pressure operator (see Sec. 6 in [43]). However, at the
same time, it increases complexity of the elements connectivity and makes element overlap
evaluation more difficult.

In this section, we concentrate on the additive overlapping Schwarz approach and discuss
modifications necessary to adapt this method for h-type AMR framework. In developing
a nonconforming solver, we use a conforming-space/nonconforming-mesh approach [25, 37],
which instead of employing “mortar” elements enforces function continuity directly at the
element faces and edges by interpolation from the low resolution element to the high reso-
lution one. This choice imposes additional restriction on the mesh structure (see Fig. 4 in
[25]), but these restrictions are acceptable within our AMR framework.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 16

2.1.1 Navier-Stokes discretisation

We review briefly discretisation of the incompressible Navier-Stokes equations to introduce
notation and point algorithm parts that require modification. The more in depth derivation
can be found in [24]. The temporal discretisation is based on a semi-implicit scheme, in
which the nonlinear term is treated explicitly and the remaining unsteady Stokes problem
is solved implicitly. To avoid spurious pressure modes our spatial discretisation is based
on the PN − PN−2 SEM, where velocity and pressure spaces are spanned by Lagrangian
interpolants on the Gauss-Lobatto Legendre (GLL) and Gauss Legendre (GL) quadrature
points respectively. Note that the basis for velocity is continuous across element interfaces,
whereas the basis for pressure is not. Assuming fn incorporates all nonlinear and source
terms treated explicitly at time tn the matrix form of Stokes problem reads:[

H −DT

−D 0

](
un

pn

)
=

(
fn

0

)
, (1)

where H = − 1
Re

A+ β0
δt

B and D are discrete Helmholtz and divergence operators respectively.
A and B denote here discrete Laplacian and the diagonal mass matrix associated with the
velocity mesh, and bold indicates matrices that interact with vector fields.

Applying Uzawa decoupling and using inverse mass matrix B−1 as approximation of
inverse Helmholtz operator H−1 one ends with[

H − δt
β0

HB−1DT

0 E

](
un

δp

)
=

(
Bfn + DTpn−1

g

)
, (2)

where

E =
δt

β0

DB−1DT (3)

is the Stokes Schur complement governing the pressure, δp = pn−pn−1 is the pressure update,
and g is the inhomogeneity arising from Gaussian elimination. Note that for this splitting
method the diagonality of the mass matrix B is crucial to avoid costly matrix inverse.

All operators H, A, B and E are symmetric positive definite (SPD) and can be solved
with preconditioned conjugate gradient (PCG). Moreover E has properties similar to a Pois-
son operator, and is often referred as “consistent Poisson operator”. The systems involving
H and E are solved iteratively with E being more challenging, and in next section we will
present preconditioning strategy for the pressure equation:

Eδp = −Du. (4)

We close this section presenting shortly SEM operators. SEM introduces globally un-
structured and locally structured basis by tessellating the domain into K non-overlapping
subdomains (deformed quadrilaterals), Ω =

⋃K
k=1 Ωk, and representing functions in each

subdomain in terms of tensor-product polynomials on a reference subdomain Ω̂ = [−1, 1]d.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 17

In this approach every function or operator is represented by its local counterparts, which
in case of functions takes form of the sum over subdomains

f(x) =
K∑
k=1

∑
i

fki hi(r).

fki and hi are here function nodal values in Ωk and the base functions in Ω̂ respectively, with i
representing natural ordering of nodes in Ω̂. Combining coefficients fki one can build function
global f and local f

L
representations. Each global degree of freedom occurs only once in

the global representation and has multiple copies of faces, edges and vertices related to Ωk

in the local one. To enforce function continuity the global-to-local mapping is defined as the
matrix-vector product f

L
= Qf , where Q is a binary operator duplicating basis coefficients

in adjoining subdomains. The action QTf
L

sums any multiple contributions to the global
degree of freedom from their local values. The assembled global stiffness matrix A takes a
form

(∇f,∇g) = fTAg = fTQTALQg,

where AL = block−diag(Ak) is the unassembled stiffness matrix comprising the local stiffness
matrices Ak. In practise the global stiffness matrix is never formed and the gather-scatter
operator QQT is used instead. This operator contains all information about element con-
nectivity.

2.1.2 Additive Schwarz method

Efficient solution of Eq. 4 requires finding an SPD preconditioning matrix M−1, which can
be inexpensively applied and which reduces the condition number of M−1E. Preconditioners
based on domain decomposition are a natural choice for SEM as the data is structured within
an element but is otherwise unstructured. An overlapping additive Schwarz preconditioner
for Eq. 4 was developed in [24] based on linear finite element discretisation of the Poisson
operator. It combines solutions of the local Poisson problems in overlapping subdomains
RT
k Â
−1
k Rk with the coarse grid problem RT

0 Â
−1
0 R0, which is solved on few degrees of freedom,

but covers the entire domain

M−1 = RT
0 Â
−1
0 R0 +

∑
k

RT
k Â
−1
k Rk.

For the local problems the restriction and prolongation operators, Rk and RT
k , are Boolean

matrices that transfer data to and from the subdomain, and Âk is a local stiffness matrix,
which can be inversed with fast diagonalisation method (see Sec. 4 in [23]). Note that action
of Rk and RT

k are similar to the gather-scatter operator QQT , so in case of Nek5000 code
this data transfer is built on top of QQT routines.

The coarse grid problems corresponds to the Poisson problem solved on the element
vertices only, with RT

0 being the operator interpolating the coarse grid solution onto the
tensor product array of GL points in the reference element. In our approach we do not follow

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 18

[24] and [23], where the coarse grid operator Â0 is constructed as the finite element Laplacian
using triangulation of the linear subdomains whose vertices are coincident with the element
vertices. Instead, we define local SEM-based Neumann operators performing projection of
local stiffness matrices Ak evaluated on the GLL quadrature points on the set of the coarse
base functions bi, which represent linear finite element base on GLL grid. The coarse base
functions are defined in Ω̂ as a tensor-product of the 1D functions b̂01(r) = 0.5(r + 1) and
b̂10(r) = 0.5(1−r) for r ∈ [−1, 1], and each of them corresponds to the single elements vertex
for which function’s value is 1. The local contribution to Â0 is given by bTi A

kbj, and full Â0

is finally assembled by local-to-global mapping summing contributions to the global degree
of freedom from their local counterparts. Â0 is one of few matrices really formed in Nek5000.

2.1.3 Adaptation for nonconforming meshes

An important advantage of SEM in context of AMR is its spatial decomposition into elements
that can be easily split into smaller ones, and use of the local representation of the operators
which decouples intra- and inter-element operations. As h-type AMR using conforming-
space/nonconforming-mesh approaches leaves the approximation spaces unchanged, most
of the tensor-product operations evaluated element-by-element are preserved, limiting the
number of changes in the algorithm.

The inter-element operations are mostly performed by gather-scatter operator QQT ,
which has to be redefined to include spectral interpolation at the nonconforming faces. Fol-
lowing [25], we consider nonconforming face shared by one low resolution element (parent)
and two (in 3D four) high resolution elements (children). We introduce local parent-to-child
interpolation operator J cp, which is a simple spectral interpolation operator with entries

(J cp)ij = hj(ζ
cp
i),

where ζcpj represents the mapping of the GLL points from the child face to its parent. This
operator is locally applied to give the desired nodal values on the child face, after Q copies
data from the parent to the children. Building block-diagonal matrix JL comprising local
matrices J cp one can redefine scatter JLQ and gather-scatter JLQQ

TJTL operators. For more
discussion see Fig. 6 and Sec. 4 in [25].

The next crucial modification is diagonalisation of the global mass matrix QTBLQ (BL

is a block-diagonal built of local mass matrices), which inverse is required in Eqs 2 and
3. It is non-diagonal due to the fact that the quadrature points in the elements along the
nonconforming faces do not coincide. A diagonalisation procedure is given in [25] and consists
of building the global vector b̃

b̃ := Bê = QTJTLBLêL,

and finally setting the lumped mass matrix B̃ij = δij b̃i. ê and êL denote here the global and
local vectors containing all ones.

The additive Schwarz preconditioner requires two significant modifications. The first one
is related to the assembly of the coarse grid operator Â0, which gets more complex for the

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 19

Figure 1: Exemplary shapes of the coarse base functions bi for the nonconforming meshes.
Note, the functions are nonzero in only one vertex corresponding to global degree of freedom
but can take any value at the hanging nodes. Element boundaries are marked by black lines.

nonconforming meshes. It is caused by the fact, that the nonconforming mesh introduces
hanging vertices located in the middle of faces or edges. These hanging vertices are not
global degrees of freedom and cannot be included in Â0. To remove them from consideration
one has to modify set of local coarse base functions bi, which start to be dependent on the
shape of the refined region as well as the position and orientation of the child face with
respect to the parent face. Unlike the conforming case, where all bi could be represented by
tensor-product of two simple functions, the nonconforming mesh requires 5 basic components
in 2 dimensions and 15 in 3 dimensions to assemble all possible shapes of the coarse base
functions. Examples of nonconforming bi are presented in Fig. 1.

The last missing component are the restriction and prolongation operators, Rk and RT
k ,

for the local Poisson problem. Taking into account similarity between these operators with
QQT and following previous development (Paul Fischer; private communication) we used
operator analogous to JLQQ

TJTL replacing JL with interpolation operator defined on GL
quadrature points. This choice seems to be optimal as it preserves properties of the precon-
ditioner and JTL is well defined.

This algorithm was implemented and tested within WP2. We describe it in more detail
here as the numerical experiment gave an important input for the later algorithm modi-
fication. The test case was 2D and 3D unit-size lid driven cavity with Reynolds number
Re = 7500 and the time step δt = 7.0×10−4. We compare here performance of the conform-
ing setup with the nonconforming one. At this stage we did not run full AMR simulation
and the nonconforming mesh including two refinement levels was fixed in time. The mesh
structure and the velocity magnitude of the 2D setups at time t = 140 are presented in Fig.
2.

In both cases the mesh was designed to keep minimum amount of elements with resolution

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 20

Figure 2: The mesh structure and the velocity magnitude of the 2D lid driven cavity setup
at time t = 140. Left and right panels present respectively conforming and nonconforming
setups. The element boundaries are marked with black lines.

at the cavity centre and at the upper cavity corners equal in both setups. It gave 63 and 46
elements for the conforming and nonconforming setups respectively, which is a 27% reduction
in the element number. With these constraints, the CFL number in both simulations was
equal 0.5. The generalised minimal residual method (GMRES) was used for iterative solution
of Eq. 4.

To validate the setup we compare the velocity profiles at the end of the simulation and
the growth of the total energy in the domain presented in Fig. 3. Both the final velocity
profiles and the energy growth are very similar in the conforming and nonconforming setups,
and the difference in the final total energy value is 1.6% only.

The performance of the pressure solver is presented in Fig. 4 showing the number of

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 20 40 60 80 100 120 140

E
n

er
g

y

Time

conforming
nonconforming

Figure 3: Total energy for the 2D lid driven cavity as a function of time.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 21

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000

It
er

at
io

n
 c

o
u

n
t

Time step

conforming
nonconforming

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000

It
er

at
io

n
 c

o
u

n
t

Time step

conforming
nonconforming

Figure 4: Iteration count of the pressure solver as a function of time step for conforming
(red) and nonconforming (green) simulations. Left and right panels present respectively 2D
and 3D setups.

iterations as a function of time step. The left plot gives result of the 2D simulation and
shows good performance of the nonconforming solver as an increase in solver complexity
does not result in visible increase of iteration count. On the contrary, the iteration count at
the end of simulation is approximately 20% lower in the nonconforming case, which could
be caused by lack of elongated elements in this setup. This effect together with smaller
number of elements, gives about 35% reduction in the simulation time, as the conforming
and nonconforming simulations took 2.67×103 and 1.73×103 seconds respectively. We have
to stress that it is more than the reduction in the element number.

The 3D setup was designed to preserve 2D nature of this test, so the mesh is periodic
in the third dimension. In this case we expect the amount of iterations in the 3D setups to
be only slightly higher than in the 2D one, and the 2D results can be used for validation
of the 3D run. Right plot in Fig. 4 gives the pressure iteration count for 3D run, showing
good performance of conforming solver and significant increase of the iteration number for
the nonconforming one. A similar effect is not visible for the velocity iterations.

Closer investigation of the problem showed it to be a result of a way the local restriction
and prolongation operators Rk and RT

k were defined. Although the use of QQT in the
conforming implementation of Rk and RT

k suggests use of the operator JLQQ
TJTL in their

nonconforming version, the pressure counterpart of JTL was found to introduce significant
amount of noise in the third, uniform direction, thereby increasing the iteration count. To
reduce the noise, we replaced the transposed interpolation operator with the inverse one,
finding significant reduction of iterations. Unfortunately, such preconditioner is no longer
SPD and PCG cannot be used as an iterative solver in this case. The other problem is
the definition of J−1

L . If J cp is the local parent-to-child interpolation operator the obvious
choice is simply J cp−1, however this operation can be performed for the square matrices
only excluding p-refinement strategies. To avoid this problem, we define child-to-parent

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 22

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000

It
er

at
io

n
 c

o
u

n
t

Time step

J transpose
J inverse

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000

It
er

at
io

n
 c

o
u

n
t

Time step

J transpose
J inverse

conforming

Figure 5: Iteration count of the pressure solver as a function of time step for nonconforming
setups using different definitions of the local prolongation operator. Left and right pan-
els present respectively 2D and 3D setups. The left plot shows as well results of the 3D
conforming simulation for comparison.

interpolation operator Jpc with the entries

(Jpc)ij =

{
hj(ζ

pc
i) if ζpj ∈ ∂Ωp ∩ ∂Ωc

0 otherwise

where ∂Ωp and ∂Ωc are the parent and child common faces, ζpj is a parent GLL point at
the face ∂Ωp, and ζpcj represents the mapping of ζpj to the child face ∂Ωc. This operator is
locally applied to give the desired nodal values on the child face, before QT sums data form
the children and the parent. Building block-diagonal matrix J−1

L comprising local matrices
Jpc one can redefine the gather-scatter JLQQ

TJ−1
L operator, that is appropriate for pressure

preconditioner.
The last approach was implemented in Nek5000 and tested giving significant improve-

ments in the pressure iteration count. As can be seen on the right plot in Fig. 5 for the 3D
case the new preconditioner gives number of pressure iterations similar to the conforming
solver. Interestingly this preconditioner gives some reduction of iteration count for 2D case
as well (left plot in Fig. 5), even thought there is no uniform direction in this case.

2.2 A posteriori spectral error indicators

Spectral error indicators have already been implemented in Nek5000 as part of the CRESTA
project. These indicators follow a method developed by C. Mavriplis [45] and are based on
the expected exponential decay of the spectral coefficients with increasing polynomial order.
As part of task 1.1 from WP1, we present the algorithm for these indicators in details. Then,
they are validated by applying them to the Kovazsnay flow and the flow past a cylinder.

The procedure to compute an estimate of the error committed on the solution of a partial
differential equation, called an error indicator, when using the spectral element method is
presented in the following steps. The method is described for a one-dimensional flow and

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 23

for one element. The computations are easily extended to two- and three-dimensional flows
following a similar reasoning and the procedure is repeated on each element of the mesh to
get the global map of error indicators.

2.2.1 Step 1: Compute the spectral coefficients

Consider u(x), the exact solution of a 1D partial differential equation, we can compute its
spectral transform as

u(x) =
∞∑
k=0

ûk pk(x), (5)

where ûk are the spectral coefficients and pk a family of orthogonal polynomials (k denotes
the polynomial order).

ûk =
1

γk

∫ 1

−1

w(x)u(x)pk(x)dx, (6)

where w is a weight associated to the family of polynomials and γk = ‖pk‖2
L2
w
. Nek5000

uses Legendre polynomials and the unknowns in one element are evaluated on the Gauss-
Lobatto-Legendre points [18]. In practice, the spectral coefficients are computed via Gauss
quadrature using tensor products.

2.2.2 Step 2: Compute the truncation error

In the spectral element method, the expansion from equation (5) does not go to infinity but
to some finite polynomial order N , causing a truncation error expressed as

εt =

(
∞∑

k=N+1

û2
k

2k+1
2

) 1
2

. (7)

While the spectral coefficients are unknown for k > N , an estimate of equation (7) can be
computed by assuming that these coefficients follow a decay given by

ûk ≈ c exp(−σk).

The parameters c and σ are computed using a least square best fit with respect to the
known coefficients ûk, k = 0, ..., N . In practice, only the four coefficients N − 3 to N are
considered (if N is higher than or equal 3). Therefore, the truncation error from equation
(7) is approximted by the integral

εt ≈

(∫ ∞
N

(c exp(−σk))2

2k+1
2

dk

) 1
2

.

As this integral does not have an analytical solution, we take the upper bound(
2c2

∫ ∞
N

exp(−2σk)

2k + 1
dk

) 1
2

≤

(
2c2

2N + 1

∫ ∞
N

exp(−2σk)dk

) 1
2

,

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 24

which can be solved and leads to the the following approximate expression of the truncation
error

εt ≈

(
c2

σ(2N + 1)
exp(−2σN)

) 1
2

. (8)

2.2.3 Step 3: Compute the quadrature error

The integral in equation (6) is computed using Gauss quadrature and is exact up to order
2N−1 only, meaning that coefficient ûN is not exact. Consequently, the approximated value
of the quadrature error is given by

εq ≈

(
û2
N

2N+1
2

) 1
2

. (9)

2.2.4 Step 4: Add both error terms

The final error indicator εtot on one element is computed by adding the contributions from
the truncation error (equation 8) and the quadrature error (equation 9)

εtot = εt + εq.

Moreover, the parameter σ is also computed and given as a result. This indication of the
strength of the decay of the spectral coefficients might be useful when chosing where to apply
refinement.

2.2.5 Validation

Kovasznay flow. We first validate the implementation of the error indicators by using the
Kovasznay flow [36], which represents the periodic, steady, two-dimensional, laminar flow
behind a grid made of equally spaced rods. As this flow possesses an analytical solution,
we can compute the exact error and compare it with the spectral error indicator for various
polynomial orders. In figure 6, we plot the horizontal and vertical velocity components of the
analytical solution of the Kovasznay flow at a Reynolds number Re = 40. We also identify
two elements of the mesh where we are going to compute the exact and approximated errors:
element 1 in the top left corner and element 2 in the top right corner.

The comparisons between the exact L2 norm of the error and the spectral error indicator
in elements 1 and 2 for both the horizontal and vertical components of the velocity are
plotted in figure 7.

The spectral error indicators follow closely the exact errors for all velocity compoments
on both elements, validating the method for this simple test case.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 25

(a) u (b) v

Figure 6: Solution of the Kovasznay flow. The error is computed in the elements denoted 1
and 2.

2D flow past a cylinder. In order to test the error indicators on a more realistic case,
we consider the two-dimensional flow around a cylinder at a Reynolds number Re = 500
for polynomial order N = 8. The mesh is deliberately kept quite coarse, and it is expected
that the indicators will exhibit high values in regions of the domain where the flow physics
is more complex: around the cylinder walls and in the wake, due to high velocity gradients
and vortex shedding. We plot the error indicators of the solution at an arbitrary given time
in figure 8.

As expected, the error is highest in the previously mentioned critical regions. This test
confirms the validity of the local spectral error indicators for practical applications.

2.3 Adjoint error estimators

The main advantage of the spectral error indicators is their easy implementation and the
low overhead in computational time. Their main drawback is their tendency to over-resolve
non significant regions of the flow. In most engineering applications, one is interested in
computing accurately some meaningful physical quantities only, such as the drag or the lift in
the case of a wing for example. Therefore, adjoint based error estimators will be implemented
in a goal-oriented approach. These estimators compute the sensitivity of a given functional
with respect to a mesh variation, allowing to refine regions of the flow relevant for the physical
quantity of interest only. As a first step towards the implementation of such estimators, we
describe the algorithm in the case of a steady flow, based on a paper by Hoffman [30].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 26

6 8 10 12 14

N

10
-20

10
-15

10
-10

10
-5

E
rr

o
r

Error on u (element 1)

Indicator

Exact

6 8 10 12 14

N

10
-15

10
-10

10
-5

E
rr

o
r

Error on v (element 1)

Indicator

Exact

6 8 10 12 14

N

10
-20

10
-15

10
-10

10
-5

E
rr

o
r

Error on u (element 2)

Indicator

Exact

6 8 10 12 14

N

10
-15

10
-10

10
-5

E
rr

o
r

Error on v (element 2)

Indicator

Exact

Figure 7: Exact error and error indicator as a function of the polynomial order N for u and
v on elements 1 and 2.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 27

Figure 8: Error indicators for a snapshot of the solution at a given time for the flow past a
cylinder at Re = 500.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 28

2.3.1 Step 1: Solve the Navier-Stokes equations

First, the steady non-linear Navier-Stokes equations are solved on a domain Ω in R3, whose
boundary is denoted Γ. The non-dimensional formulation of the equations is expressed as

(u · ∇)u = −∇p+
1

Re
∆u + f ,

∇ · u = 0,

u|ΓD = gD,

n · ∇u|ΓN = gN ,

where ΓD and ΓN denote parts of the boundary with Dirichlet and Neumann conditions
respectively.

2.3.2 Step 2: Express the functional of interest

The quantity of interest whose sensitivity is to be studied is expressed as a target functional
of the form

M(q) =

∫
Ω

(u · ψ + pχ) dV +

∫
Γ

pn · ψΓ ds (10)

where q = (u, p) is the primal steady solution. The terms ψ, χ and ψΓ represent some integral
weights in the volume and on the border respectively. The expression of the functional is not
general but is well suited for a wide range of practical applications. For example, a target
functional, which is the sum of the lift and drag on an airfoil, is obtained if ψ = χ = 0 and
if ψΓ is set to the sum of the unit vectors opposite and normal to the flight direction. A
more general, for example non-linear, expression for the target functional can be specified if
compatibility with the adjoint problem, which is presented immediately, is ensured.

2.3.3 Step 3: Solve the linearized adjoint Navier-Stokes equations

Once a steady solution has been obtained and a target functional defined, the next step is
to solve the backward, or adjoint, linearized Navier-Stokes equations. The adjoint equations
are expressed as

−(u · ∇)u† + (∇u)Tu† −∇p† − 1

Re
∆u† = ψ,

∇ · u† = χ,

u†|Γ = ψΓ,

where q† = (u†, p†) is the adjoint solution and u is now the constant baseflow. Let us
notice that the source terms and boundary conditions for the adjoint equations are directly
dependent on (10), the expression of the functional. The solution of this dual problem
provides a sensitivity map of the target functional with respect to the primal solution.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 29

2.3.4 Step 4: Adjoint error estimators

The expression for the adjoint error estimators combines the strong residual of the forward
solution and adjoint weights based on the interpolation error committed on the dual solution.
We start by expressing the error on the output functional between the exact solution of the
Navier-Stokes equations q = (u, p) and a weak, discrete solution q̂ = (û, p̂) obtained via the
spectral element method. This is given by

ε = |M(q)−M(q̂)| .

Using the definition of the adjoint problem and the Galerkin orthogonality, this can be
expanded as

ε = |M(q)−M(q̂)| ,
=
∣∣((R(q),q†

))
−
((
R(q̂),q† − q̂†

))∣∣ ,
≤
∣∣((R(q),q†

))∣∣︸ ︷︷ ︸
=0

+
∣∣((R(q̂),q† − q̂†

))∣∣ ,
where ((·, ·)) is a space-time inner product and R(q) denotes the strong residuals

R(q) =

(
R1(q)
R2(u)

)
=

(
(u · ∇)u +∇p− 1

Re
∆u− f

∇ · u

)
,

which are zero only if evaluated on the exact solution. Assuming that the domain Ω is split
in K spectral elements, we apply the Cauchy-Schwarz inequality to each element and obtain

ε ≤
∣∣((R1(q̂),u† − û†

))∣∣+
∣∣((R2(û), p† − p†

))∣∣ ,
≤

K∑
k=1

|R1 (q̂)|k ·
∣∣u† − û†

∣∣
k︸ ︷︷ ︸

ω1,k

+ |R2 (û)|k
∣∣p† − p̂†∣∣

k︸ ︷︷ ︸
ω2,k

 ,

where the adjoint weights ω1 and ω2 represent interpolation errors between the exact and
spectral adjoint solutions. In the case of spectral elements, these errors can be approximated
a priori by (see [18])

ω1,k =
∣∣u† − û†

∣∣
k
≤ CN−

1
2N−m

∣∣∣∣u†∣∣∣∣
Hm(Ω)

,

ω2,k =
∣∣p† − p̂†∣∣

k
≤ CN−

1
2N−m

∣∣∣∣p†∣∣∣∣
Hm(Ω)

,

where C is some constant and N is the polynomial order on each element.
In practice, however, the exact solution is unknown and we use instead the approximation

ω1,k . CN−
1
2N−m

∣∣∣∣û†∣∣∣∣
Hm(Ω)

,

ω2,k . CN−
1
2N−m

∣∣∣∣p̂†∣∣∣∣
Hm(Ω)

.

In conclusion, the expression for the adjoint error estimators is obtained on each element
by multiplying the norm of the strong residuals by an adjoint weight, which is approximately
the interpolation error on the dual solution.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 30

2.4 Summary of progress and outlook

Here we summarise our achievements and future plans:

• We have optimised, implemented in Nek5000 code and tested the pressure precon-
ditioner based on the additive overlapping Schwarz method within the h-type AMR
framework. To achieve this we modified the base functions for the assembly of the
coarse-grid operator to neglect hanging nodes. We redefined as well the direct stiffness
summation operator QQT to include spectral interpolation J at the nonconforming
faces and edges. Although the natural replacement of QQT based on the Helmholtz
operator would be JLQQ

TJTL , we found the operator JLQQ
TJ−1

L superior for the pres-
sure operator. It gave significant reduction of pressure iterations in the 3D lid driven
cavity test, even though it does not preserve the operator symmetry and cannot be
evaluated with PCG. Most of 2D and 3D tests showed lower number of pressure iter-
ations for the simulations performed with nonconforming meshes in comparison with
simulations using conforming ones. The last crucial modification was diagonalisation
of the global mass matrix QTBLQ, which is non-diagonal due to the fact that the
quadrature points in the elements along the nonconforming faces do not coincide.

In the future we are going to investigate and adapt for AMR framework restricted
additive Schwarz [8, 20] and hybrid Schwarz-multigrid preconditioner. We expect them
to be superior over the implemented one.

• A priori spectral error indicators based on the decay of the spectral coefficients have
been thoroughly described and validated on two-dimensional test cases. These indica-
tors have already been included within the h-type AMR framework and applied to the
simulation of a two-dimensional backward-facing step. Results will be presented at the
DLES11 conference later this year.

• The algorithm for adjoint error estimators has been described in the case of a steady
flow. In the future, it will be extended to unsteady flows and implemented. The capa-
bilities of Nek5000 already include the resolution of the non-linear Navier-Stokes and
linearized adjoint equations. Therefore, the remaining steps towards implementation of
the adjoint error estimators are the computation of the strong residuals, the computa-
tion of the adjoint weights and the combination of both terms to obtain the final error.
It is expected that these error estimators will prevent over-resolution compared to the
spectral ones, when only the accurate computation of one or several target quantities
is required.

• We expect that both the spectral error indicators and adjoint error estimators will be
compared and applied to some of the test cases from work package 3, in particular
targeting the jet in crossflow and the NACA4412 airfoil.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 31

3 Error control for heterogeneous modelling

Two new error indicators have recently been developed as part of Task 1.2 in WP1, both
based on spectral techniques using small-scale Fourier transforms. The crux of the ap-
proach involves quantifying whether the spectral energy E(k) (and therefore the Fourier
mode amplitude Y (k)) of a solution field decreases at a desired (prescribed) minimal ac-
ceptable rate/slope r, such that the smallest scale flow structures have the lowest energy
content. If the small scales are not resolved well enough then an increase in E(k) will result
and instabilities are likely to occur. Being able to determine and quantify the severity of
any deviation away from this acceptable slope facilitates the dynamic focussing of resolution
in that area. This is extremely beneficial in the context of exascale scientific computing
since accurate simulations can be performed with limited floating-point operations (FLOPS)
and memory resources by only placing resolution where it is needed and ensuring that the
number of superfluous grid points is minimised.

Examples of the reconstructured Fourier amplitudes against a minimal acceptable slope
are plotted in Figure 9, for a poorly-resolved and well-resolved simulation. As expected,
the spectral energy deviates away from the slope immediately in the poorly-resolved case,
whereas the spectral energy decreases faster than the minimal acceptable slope in the well-
resolved case as we would hope.

Figure 9: Reconstructed Fourier amplitudes against increasing wavenumber, for a poorly-
resolved simulation (left) and a well-resolved simulation (right) of the Taylor-Green vortex
problem. The values are the mean amplitudes over all grid points in a representative block
in the domain. A minimal acceptable slope of r = -0.5 has also been plotted.

The error indicators were implemented in the OpenSBLI code [32, 33], to take advantage
of the ability to target the model’s OPS-compliant C code towards a variety of hardware
architectures.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 32

3.1 Error indicators

The individual steps of the error indicator algorithm are as follows:

3.1.1 Step 1: Hamming window

Within each N3
e block of grid points, loop over each line of grid points in each direction.

For each line, apply a Hamming window to the user-specified solution field to prepare it for
Fourier analysis:

yj = yj

(
0.54− 0.46 cos

(
2πj
Ne

))
0.54

, (11)

where yj is the j-th component of the line of solution points y.

3.1.2 Step 2: Fourier amplitude reconstruction

For each line of grid points, the Fourier amplitudes for wavenumbers Ne/2, Ne/4 and Ne/8
of y are computed by using simple summations:

S2 =
Ne∑
j=1

(−1)j−1yj, (12)

S4 =
Ne∑
j=1

(−i)j−1yj, (13)

S8 =
Ne∑
j=1

exp(−π
4

i)j−1yj, (14)

where i =
√
−1.

3.1.3 Step 3: Error severity values

The severity values from the error indicators are then computed. These will be denoted Ii
and If here, and are integer-valued and floating-point-valued, respectively:

Ii =

{
1, if A2 > A4 + ε

0, otherwise
+

{
1, if A4 > A8 + ε

0, otherwise
+

{
1, if A8 > A2 + ε

0, otherwise
(15)

If = log

(
1 + b A2

A4 + ε
c+ b A4

A8 + ε
c+ b A2

A8 + ε
c
)
, (16)

where

A2 = 2−2r

∣∣∣∣S2

Ne

∣∣∣∣ , (17)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 33

A4 = 2−r
∣∣∣∣2S4

Ne

∣∣∣∣ , (18)

A8 =

∣∣∣∣2S8

Ne

∣∣∣∣ , (19)

which are computed in each direction along N2
e lines, with the maximum value of A2, A4 and

A8 over all lines being used to calculate Ii and If . The small value ε is used to avoid division-
by-zero problems in the case of uniform flow, and r is the minimal acceptable slope at which
the Fourier mode amplitudes should decrease; this is defined by the user and depends on the
problem under consideration. We chose a value of r = 0.5 here.

3.2 Validation

The 3D Taylor-Green vortex problem [5, 17] was used to evaluate the effectiveness of the
error indicators. The domain was a periodic cube of length 2π, and a fourth-order finite
difference scheme without additional filtering was used to discretise the domain in space.
The grid sizes N = 323, 643, 1283, 2563 were considered. A third-order, low-storage Runge-
Kutta scheme with a timestep of ∆t = 6.77×10−3 (for the 323 grid; this was halved for each
successive refinement of the grid) was used to advance the equations forward in time, with
each simulation being run until non-dimensional time T = 20. All simulations were run on
an NVIDIA K40 GPU using the CUDA backend. Further details of the setup and initial
conditions are provided in the paper by [32].

The number of ‘error indicator blocks’ in each direction was set to 4, such that each block
contained (N/4)3 solution points. A single value of Ii and If were calculated for each block.
The solution field y, considered by the error indicators, was chosen to be the z-component
of the vorticity field because grid-to-grid point oscillations usually first appear in derivative
quantities. It was found that the use of a 323 grid resulted in a significant amount of grid-
to-grid point oscillation (and thus a considerable amount of solution error), especially at the
point of maximum enstrophy. Table 1 and Figure 10 show how Ii and If successfully indicate
that the error severity decreases as the grid is refined, as expected.

A better visualisation of the effects of refining the grid is given in Figure 11. The total
number of high Ii values is greatly reduced throughout time. The point of maximum en-
strophy is at t = 9–10 where the flow is turbulent. This point in time yields a much greater
number of high severity values, which implies that further grid refinement is necessary to
adequately resolve the turbulent structures.

The error indicator was improved through the use of overlapping blocks, such that 73

blocks were used instead of 43 (keeping the number of grid points in each block the same).
Thus an error severity value was computed at every Ne/2 points in space. Figure 12 shows
that the severity values became less uniform (i.e. not all blocks are green or blue like in
Figure 11). This overlapping approach therefore gives a more detailed picture of exactly
where high-severity errors are in the domain.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 34

Figure 10: The error severity at all error indicator blocks in a 323, 643, 1283 and 2563 grid
(top-left to bottom-right), at t = 10.155. Blue, green, yellow and red indicate Ii error severity
values of 0, 1, 2 and 3, respectively.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 35

0 5 10 15 20
Time

0

10

20

30

40

50

60

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

10

20

30

40

50

60

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

10

20

30

40

50

60

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

10

20

30

40

50

60

Se
ve

ri
ty

co
un

t

Figure 11: The counts of all the error indicator values across the entire domain for 323, 643,
1283 and 2563 grids (top-left to bottom-right). Blue, green, yellow and red indicate Ii error
severity values of 0, 1, 2 and 3, respectively.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 36

0 5 10 15 20
Time

0

50

100

150

200

250

300

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

50

100

150

200

250

300

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

50

100

150

200

250

300

Se
ve

ri
ty

co
un

t

0 5 10 15 20
Time

0

50

100

150

200

250

300

Se
ve

ri
ty

co
un

t

Figure 12: The counts of all the error indicator values across the entire domain for 323, 643,
1283 and 2563 grids (top-left to bottom-right), using overlapping blocks. Blue, green, yellow
and red indicate Ii error severity values of 0, 1, 2 and 3, respectively.

3.3 Outlook and future work

An abstract on this work has been accepted for presentation at the ParCFD 2017 conference
later in the year. One major limitation is currently the run-time of the error indicator
algorithm, which more than doubled the run-time for the 643 grid case. The plan for the
next 6 months is therefore to (a) improve the efficiency of the implementation as part of
WP2, and (b) to apply these error indicators to a simulation of flow past an aerofoil as part
of WP3. Results from this will be used to help guide the grid generation process to ensure
that a suitably fine grid is produced for the accurate simulation of the highly turbulent flow
dynamics.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 37

Grid size max(Ii) max(If)

323 3 1.386294
643 1 1.098612
1283 1 0.693147
2563 1 0.693147

Table 1: Grid sizes considered in the Taylor-Green vortex simulation, with the maximum
severity value of the error indicators over all I/O dumps.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 38

4 Mixed CG-HDG formulation

High-order methods on unstructured grids are now increasingly being used to improve the
accuracy of flow simulations since they simultaneously provide geometric flexibility and high
fidelity. In ExaFLOW, we are particularly interested in efficient algorithms for incompressible
Navier-Stokes equations that employ high-order space discretization and a time splitting
scheme. The cost of one step in time is largely determined by the amount of work needed to
obtain the pressure field, which is defined as a solution to a scalar elliptic problem. Several
Galerkin-type methods are available for this task, each of them have specific advantages and
drawbacks.

High-order continuous Galerkin (CG) method is the oldest and amongst the most common
methods for solving elliptic problems. Compared to its discontinuous counterparts, it involves
a smaller number of unknowns (figure 13), especially in a low-order setting. The CG solution
can be accelerated by means of static condensation, which produces a globally coupled
system involving only those degrees of freedom on the mesh skeleton. The element interior
unknowns are subsequently obtained from the mesh skeleton data by solving independent
local problems that do not require any parallel communication.

The amount of information interchanged while constructing and solving the statically
condensed system, however, is determined by the topology of the underlying grid. Unstruc-
tured mesh generators often produce meshes with high vertex valency (number of elements
incident to given vertex) and CG therefore has rather complex communication patterns in
parallel runs, which has a negative impact on scaling [67].

Discontinuous Galerkin (DG) methods [2], on the other hand, duplicate discrete variables
on element boundaries, thus decoupling mesh elements and requiring at most pairwise com-
munication between them. This is at the expense of larger linear system and more time
spent in the linear solver. Discontinuous discretization is therefore expected to scale better
on parallel computers, but the improved scaling is not necessarily reflected in significantly
smaller CPU times when compared to a CG solver.

Hybrid discontinuous Galerkin (HDG) methods [14] address this problem by introduc-
ing an additional (hybrid) variable on the mesh skeleton. The hybrid degrees of freedom
determine the rank of the global system matrix and HDG therefore produces a statically
condensed system that is similar in size to the CG case. In contrast with CG, the static
condensation in HDG takes place by construction rather than being an optional iterative
technique. Similarly to the classical DG method, HDG scales favourably in comparison with
CG, but the work-to-communication ratio is once again improved due to increased amount
of intra-node work rather than due to better overall efficiency.

To maximize the potential of each Galerkin variant in a unified setting, the aim of this task
is to study a finite element discretization that combines the continuous and discontinuous
approach by considering a hybrid discontinuous Galerkin method applied to connected groups
of elements supporting a globally continuous polynomial basis. This settings leads naturally
to a formulation of weak Dirichlet boundary conditions for the CG method.

In the following sections, we will outline the formulation of this mixed scheme, first
concentrating on the weak boundary conditions that are used to weakly impose local Dirichlet

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 39

Figure 13: Distribution of unknowns for continuous and discontinuous Galerkin methods.

conditions on each local patch. We will then examine a performance model of the full system
to investigate the computational cost associated with solving the problem with either CG,
HDG or the mixed CG-HDG scheme.

4.1 Formulation

This section is largely based on paper [34]. We seek solution of the following problem with
Dirichlet and Neumann boundary conditions:

−∇2u(x) = f(x) x ∈ Ω, (20)

u(x) = gD(x) x ∈ ∂ΩD, (21)

n · ∇u(x) = gN(x) x ∈ ∂ΩN , (22)

where ∂ΩD

⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. To formulate the DG method, we consider

a mixed form of (20) by introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (23)

q = ∇u(x) x ∈ Ω, (24)

u(x) = gD(x) x ∈ ∂ΩD, (25)

q · n = gN(x) x ∈ ∂ΩN . (26)

The DG methods seeks an approximation pair (uDG, qDG) to u and q, respectively, in the
space Vh ×Σh. The solution is required to satisfy the weak form of (23) and (24)∑

Ωe∈Th

∫
Ωe

(
∇v · qDG

)
dx−

∑
Ωe∈Th

∫
∂Ωe

v(ne · q̃DG) ds =
∑

Ωe∈Th

∫
Ωe
v f dx (27)

∑
Ωe∈Th

∫
Ωe

(w · qDG) dx = −
∑

Ωe∈Th

∫
Ωe

(∇ ·w)uDG dx+
∑

Ωe∈Th

∫
∂Ωe

(w · ne)ũDG ds, (28)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 40

for all (v,w) ∈ Vh(Ω)×Σh(Ω), where the numerical traces ũDG and q̃DG have to be suitably
defined in terms of the approximate solution (uDG, qDG). Here, Th represents an appropriate
tesselation of the domain into non-overlapping elements Ωe so that Ω =

⋃
e Ωe.

4.1.1 Local formulation of the HDG method

Assume that the function
λ := ũDG ∈Mh, (29)

is given. Then the solution restricted to element Ωe is a function ue, qe in P (Ωe) × Σ(Ωe)
satisfies the following equations:∫

Ωe

(∇v · qe) dx−
∫
∂Ωe

v(ne · q̃e) ds =

∫
Ωe

v f dx, (30)

∫
Ωe

(w · qe)dx = −
∫
Ωe

(∇ ·w)uedx+

∫
∂Ωe

(w · ne)λ ds, (31)

for all (v,w) ∈ P (Ωe) × Σ(Ωe). For a unique solution of the above equations to exist, the
numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ωe (32)

for some positive function τ .

4.1.2 Global formulation

We denote by (Uλ,Qλ) and by (Uf ,Qf) the solution to the local problem (30), (31) when
λ = 0 and f = 0, respectively. Due to the linearity of the original problem (20) and its
mixed form, the solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf). (33)

In order to uniquely determine λ, we require that the boundary conditions be weakly satisfied
and the normal component of the numerical trace of the flux q̃ given by (32) is single valued,
rendering the numerical trace conservative.

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (34)∑
Ωe∈Th

∫
∂Ωe

µq̃ · n ds =

∫
∂ΩN

µgN ds, (35)

for all µ ∈ M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 41

Figure 14: Notation used throughout this section for elements and index mappings.

In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions in
terms of the basis φej(x) for the expansions over elements and the basis ψlj(x) over the traces
of the form:

ue(x) =

Ne
u∑

j=1

φej(x)ûe[j] qek(x) =

Ne
q∑

j=1

φej(x)q̂e
k
[j] λl(x) =

N l
λ∑

j=1

ψlj(x)λ̂
l
[j]

4.1.3 Matrix form

We now define several local matrices stemming from standard Galerkin formulation, where
scalar test functions ve are represented by φei (x), with i = 1, . . . , N e

u and vector test functions
are represented by ekφi where e1 = [1, 0]T and e2 = [0, 1]T in two dimensions:

De
k[i, j] =

(
φei ,

∂φej
∂xk

)
Ke

Me[i, j] =
(
φei , φ

e
j

)
Ke

Ee
l [i, j] =

〈
φei , φ

e
j

〉
∂Ke

l

Ẽe
kl[i, j] =

〈
φei , φ

e
jn

e
k

〉
∂Ke

l

Fe
l [i, j] =

〈
φei , ψ

σ(e,l)
j

〉
∂Ke

l

F̃e
kl[i, j] =

〈
φei , ψ

σ(e,l)
j nek

〉
∂Ke

l

where σ represents the index mappings of figure 14. If the trace expansion matches the
expansions used along the edge of the elemental expansion and the local coordinates are
aligned, that is ψ

σ(e,l)
i (s) = φk(i)(s) then Ee

l contains the same entries as Fe
l and similarly Ẽe

kl

contains the same entries as F̃e
kl.

Inserting the finite expansions of the trial functions into equations (30) and (31) and

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 42

Figure 15: Decomposition of the domain into four macro-elements. Red lines denote the
skeleton or trace of the macro-elements on which λ is defined.

using the definition of the flux (32) yields the matrix form of local solvers

[
(De

1)T (De
2)T
] q̂e

1

q̂e
2

− Ne
b∑

l=1

[
Ẽe

1l Ẽ
e
2l

] q̂e
1

q̂e
2

+

Ne
b∑

l=1

τ e,l
[
Ee
l û

e − Fe
l λ̂

σ(e,l)
]

= f e (36)

Meq̂e
k

= −(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 0, 1 (37)

The global equation for λ can be obtained by discretizing the transmission condition (35).
We introduce local element-based and edge-based matrices

F
l,e

[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn

e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

and define
gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τ e,i + τ f,j)Ḡlλ̂
l
− τ e,iF̄l,eue − τ f,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j).

4.2 Combined Continuous-Discontinuous Formulation

To take advantage of the efficiency and lower memory requirements of continuous Galerkin
method together with the flexibility and more favorable communication patterns of discontin-
uous Galerkin methods in domain-decomposition setting, we combine both as follows. Each

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 43

mesh partition is seen as a ‘macro-element’, where the governing equation is discretized by
continuous Galerkin solver, while the patches are coupled together weakly as in HDG. This
means that the scalar flux (hybrid variable) λ is only defined on inter-partition boundaries.
A visualisation of this is shown in figure 15. In this section, we will discuss the mathematical
formulation of the local problems, and show how this translates into a weak imposition of
Dirichlet boundary conditions for each macro-element.

4.2.1 Continuous-Discontinuous Solver

The motivation of this section is to take the matrix form of the HDG solver and apply it
in continuous setting. Intuitively, we would expect the discrete weak form to reduce to the
‘standard’ Laplace operator, accompanied by extra terms, which will be only applied on
elements adjacent to partition boundaries, providing weak coupling between each partition
and the global trace variable. We will show that this is indeed the case and examine the
convergence properties of the local solvers in this setting, compared to the strongly-imposed
Dirichlet conditions that are standard to the fully-continuous method.

After expressing the flux variable in equation (37) as

q̂e
k

=
(
Me
)−1

−(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)

 k = 1, 2 (38)

and inserting into (36), the local solver becomes

2∑
k=1

(De

k

)T − Ne
b∑

l=1

Ẽe
kl

(Me
)−1

−(De
k

)T
ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)

+

Ne
b∑

l=1

τ e,l
[
Ee
l û

e − Fe
l λ̂

σ(e,l)]
= f e

(39)

Note that in equation (36), we can assume that Ee
l = Fe

l if the primal variable u and
the hybrid variable λ use the same expansion basis on element traces. Equation (36) then
becomes (De

1)T −
Ne
b∑

l=1

Ẽe
1l

 q̂e
1

+

(De
2)T −

Ne
b∑

l=1

Ẽe
2l

 q̂e
2

= f e (40)

or with q̂e expressed in terms of ûe:

∑
k=0,1

(De

k

)T − Ne
b∑

l=1

Ẽe
kl

(Me
)−1

−(De
k

)T
ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)

 = f e (41)

On affine elements, we can write(De
k)
T −

Ne
b∑

l=1

Ẽe
kl

 = −De
k, k = 1, 2 , (42)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 44

which is a discrete representation of integration by parts:∫
Ωe
φi

∂

∂xk
φjdx = −

∫
Ωe

∂

∂xk
φiφjdx+

∫
∂Ωe

φiφjn
e
kds. (43)

After substituting the discrete identity into the local solver (40), we obtain

−De
1q̂
e

1
−De

2q̂
e

2
= f e, (44)

which is a discrete counterpart of the original mixed form −∇ · q = f(x).
Now suppose that λ is a known value on domain boundary. With the aid of (42), equation

(39) can be simplified as:

2∑
k=1

(De

k

)T − Ne
b∑

l=1

Ẽe
kl

(M−1
e

)De
k −

Ne
b∑

l=1

Ẽe
kl

 ûe

+
2∑

k=1

(De

k

)T − Ne
b∑

l=1

Ẽe
kl

︸ ︷︷ ︸

−De
k

(
M−1

e

) Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)

+

Ne
b∑

l=1

τ (e,l)
[
Ee
l û

e − Fe
l λ̂

σ(e,l)
]

= f e

(45)

The terms
(
De
k

)T (
Me
)−1

(De
k) for k = 1, 2 represent the standard Laplace operator as dis-

cretized by the continuous Galerkin method. This is the main reason why the expression
(39) was manipulated using (42) - to obtain the product of matrices DTMD in correct order
that is identical to CG discretization. The final discrete form on elements which are adjacent
to domain boundary is therefore

2∑
k=1

{
(De

k)
T
(
Me
)−1

De
k +

(Ne
b∑

l=1

Ẽe
kl

)(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)

−
(Ne

b∑
l=1

Ẽe
kl

)(
Me
)−1

De
k −

(
De
k

)T (
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)}
ûe +

Ne
b∑

l=1

τ (e,l)Ee
l û

e

= f e +
2∑

k=1

De
k

(
Me
)−1
(Ne

b∑
l=1

F̃e
klλ̂

σ(e,l)
)+

Ne
b∑

l=1

τ (e,l)Fe
l λ̂

σ(e,l)
.

(46)

This formulation applied to a single domain enables the weak imposition of Dirichlet boundary
conditions given by the hybrid variable λ. A single domain in this setting is no longer one
element, but a group of elements supporting a piecewise-continuous basis.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 45

Remark 1. Using again the identity(De
k)
T −

Ne
b∑

l=1

Ẽe
kl

 = −De
k, k = 1, 2 , (47)

the second and fourth LHS terms in (46) can be merged and the above variational form
becomes:

2∑
k=1

{
(De

k)
T
(
Me
)−1

De
k︸ ︷︷ ︸

1

−
(Ne

b∑
l=1

Ẽe
kl

)(
Me
)−1

De
k︸ ︷︷ ︸

2

}
ûe

+
2∑

k=1

{
De
k

(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)
︸ ︷︷ ︸

3L

}
ûe +

Ne
b∑

l=1

τ (e,l)Ee
l û

e

︸ ︷︷ ︸
4L

= f e︸︷︷︸
5

+
2∑

k=1

De
k

(
Me
)−1
(Ne

b∑
l=1

F̃e
klλ̂

σ(e,l)
)︸ ︷︷ ︸

3R

+

Ne
b∑

l=1

τ (e,l)Fe
l λ̂

σ(e,l)

︸ ︷︷ ︸
4R

.

The meaning of the terms is as follows:

• 1 - Laplace term

• 2 - Neumann boundary term

• 3 and 4 - weak Dirichlet terms (left- and right-hand side components)

• 5 - source (forcing) term

4.2.2 Convergence rates comparison: weak vs. strong boundary conditions

To check the validity of the scheme, we have evaluated the accuracy of weakly imposed
Dirichlet boundary conditions on a scalar Helmholtz problem solved in a square domain
(−1, 1)2 with zero Dirichlet boundary conditions. To verify the convergence rates, the prob-
lem was first solved on a series of meshes with increasing number of unknowns and third-
order elements. We then repeated the test on a fixed triangular and quadrilateral grid with
polynomial degrees increasing from 2 to 14.

Figure 16 shows that convergence rate in strong and weak settings is virtually identical.
The solution of linear system with weak boundary conditions included is slightly slower
because the Dirichlet degrees of freedom are not eliminated a priori as in the strong case.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 46

(a) h-convergence, strong boundary conditions. (b) h-convergence, weak boundary conditions.

(c) p-convergence, strong boundary conditions. (d) p-convergence, weak boundary conditions.

Figure 16: Convergence to the exact solution in L2 norm.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 47

Nitsche, η = 104 Nitsche, η = 106

Figure 17: Comparison of different values of η for the Nitsche method in an L-shaped domain
of third-order tetrahedra.

4.3 Weak Dirichlet boundary conditions: benefits and applica-
tions

In this section, we briefly describe some of the benefits and applications of the derivation
of this weak boundary condition in terms of the extension of existing literature, as well as
applications to the ExaFLOW test cases.

4.3.1 Comparison against alternative methods

The HDG method which we departed from in order to derive the formulation of weak bound-
ary conditions is not the only finite element discretization that uses a penalty term (called
τ in HDG) in order to enforce constraints. The classical procedure in the continuous case is
known as Nitsche’s method. Consider a Poisson equation

−∆u = f in Ω

with Dirichlet boundary condition u|∂Ω = g.
Nitsche’s method leads to the following weak form:∫
Ω

uv dx−
∫
∂Ω

∂u

∂n
v ds−

∫
∂Ω

∂v

∂n
g ds+ η

∫
∂Ω

uv ds =

∫
Ω

fv dx−
∫
∂Ω

∂v

∂n
g ds+ η

∫
∂Ω

gv ds,

where η is a penalty parameter that enforces the coercivity of the bilinear form on the left-
hand side, thus enabling the convergence of the solution. This parameter is case-dependent
and generally large, which causes an issue in terms of determining an appropriately sized
penalty term in order to achieve convergence and accuracy of the obtained solution.

As an example, consider the Poisson equation with g = 1 + sin(πx) + sin(πy) + sin(πz)
in a 3D L-shaped domain discretized by third-order nodal tetrahedra, shown in figure 17.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 48

weak BC, τ = 1.0

Figure 18: The Poisson problem in the L-shaped domain of third-order tetrahedra, but
instead using the HDG weak boundary conditions with τ = 1.

We see here that the solution is only correct for a sufficiently large choice of the penalty
parameter η. However, if we apply the formulation of the previous section, where weak
boundary conditions are obtained by considering the problem in the HDG setting, we obtain
the picture in figure 18. Here, simply selecting τ = 1 is sufficient to obtain a correct solution.
As seen elsewhere in the HDG literture, we have found that generally the selection of τ does
not significantly alter the accuracy of the solutions that are obtained. In this sense, the
weak boundary condition formulation is ‘almost’ parameter free. This would therefore seem
to be a more practical alternative to Nitsche’s method when the weak imposition of Dirichlet
boundary conditions is required.

4.3.2 Applications in the context of ExaFLOW WP3 test cases

We intend to use the weak boundary conditions for the simulation of turbulent flows, par-
ticularly in cases when the flow features are not fully resolved and when the imposition of
strong Dirichlet conditions can cause numerical convergence issues. Given the fact that the
weak enforcement of no-slip condition on wall boundaries allows for the computed velocity to
differ from imposed values to larger extent than in strong case, we would like to understand
whether this relaxation of constraints would render the solver more stable in applications
where stability has been previously been an issue.

In particular, our goal is to understand the application of these weak boundary conditions
to the Formula 1 case being investigated in WP3, where the contact patch between mov-
ing tyre and stationary road induces a natural discontinuity in the imposition of Dirichlet
boundary conditions. This causes large increases in the pressure, which can further lead to
numerical instability. We aim to investigate whether the application of the weak boundary
conditions derived here will aide in alleviating some of these numerical issues.

As an initial test in three-dimensions, we have run simulations of an incompressible flow in

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 49

Figure 19: Laminar solution with strong (left) and weak (right) boundary conditions for
velocity.

an infinite pipe using a mixed spectral/hp element and Fourier pseudospectral discretization
available in Nektar++. The Fourier expansion is used in the streamwise direction and
the spectral/hp elements are used to capture the circular cross-section, so that the weak
boundary conditions are imposed in circular cross-sections at the wall for the velocity field.
An example solution of laminar flow with Re = 250 obtained on seventh-order elements with
8 Fourier modes in streamwise direction is presented in figure 19. Note that in the figure
depicting the strongly imposed boundary conditions, the velocity field has a minimum of
precisely zero, whereas for the weakly imposed conditions this is a small value of around
10−10, which is above zero as expected.

Future work on this topic will involve a more rigorous study of turbulent pipe flow. We
will aim to examine the effects of applying these weak boundary conditions when the mesh
is under-resolved. In particular, since this case is a well-known benchmark in the fluids
community, we will examine known quantities such as the boundary layer velocity profiles,
distribution of wall shear stresses and other statistical quantities in order to properly quantify
the effects of under-resolution of the mesh in the presence of weak boundary conditions.
We note that these efforts align with the work being performed in WP3 under the jet-
in-crossflow test case, and so the results of this investigation may guide the use of these
boundary conditions for other WP3 cases.

4.4 Expected performance of the CG-DG scheme

Having derived the formulation of the local problems, we now move on to considering the
expected performance of the CG-HDG scheme by analysing the likely cost of operator eval-
uations of a Poisson problem for an idealised mesh. We assume that the discrete Poisson
problem is solved in two stages, both of which will significantly contribute to the overall
CPU time spent in the solver. The stages are:

1. Assembly and solution of a statically condensed system. This step involves
processing unknowns on entity boundaries, where ‘entity’ would be each single element
in the context of continuous and hybrid discontinuous Galerkin methods and one mesh

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 50

Figure 20: Idealized mesh divided into P × P patches, each patch containing N1D
e × N1D

e

elements of order p.

patch (a group of elements spanned by a continuous polynomial basis) in the combined
continuous-discontinuous Galerkin method.

The main difference between CG and HDG is that in the continuous case, trace variables
are identical to variables located on element boundaries and are shared by neighbour-
ing elements. The HDG method, on the other hand, introduces an additional hybrid
variable, thus requiring more memory storage. This variable is not globally continuous,
hence degrees of freedom on face boundaries are duplicated. As a consequence, the
HDG interior solve on each element has to process a slightly larger local system.

2. Interior solve. Given solution on entity boundary, the solution in entity interior is
reconstructed during this stage. Interior solve involves the inverse of a potentially large
matrix.

Since we assume that the Poisson system corresponds to that being solved in, for example, the
incompressible Navier-Stokes equations, setup costs (for example precomputing and storing
the matrix inverses needed in interior solve above) are not taken into account, since matrices
can be stored for use in multiple timesteps.

4.4.1 Domain Description

We first need to define a grid on which CG, HDG and CG-HDG can be examined. We assume
a structured grid divided into P × P patches, each patch consisting of N1D

e ×N1D
e elements

(figure 20). Each element has a polynomial basis of degree p, i.e. (p + 1) × (p + 1) degrees
of freedom. These may or may not be shared with neighbouring elements, depending on the
setup (CG vs. DG vs. HDG) and global continuity of the polynomial bases. The number of

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 51

Figure 21: Interior edges (blue) within a patch.

inter-patch edges (red edges in figure 20) is

N edges
interpatch = 2P · (P − 1) ·N1D

e ,

and each patch contains N edges
patch interior edges, with

N edges
patch = 2N1D

e · (N1D
e − 1),

as shown in figure 21. In the following sections, we analyse the cost of each of the solver
stages.

4.4.2 Stage I: Solution of Statically Condensed System

Continuous Galerkin. Since the total number of elements along each side of the mesh is
P ·N1D

e in 2D, the total number of unknowns before static condensation (assuming Dirichlet
boundary condition everywhere) is

Ndof
CG =

(
P ·N1D

e · p− 1
)2
.

This is also the rank of global system matrix. In case of one-level static condensation, the
global system has the form [

Mb Mc

MT
c Mi

] [
xb
xi

]
=

[
f b
f i

]
and the rank of Mb is approximately (counting the boundary modes on the skeleton of the
mesh) equal to

Nλ
CG = (N edges

interpatch + P ·N edges
patch) · p = (2P · (P − 1) ·N1D

e + P · 2N1D
e · (N1D

e − 1)) · p
= 2PN1D

e (P +N1D
e − 2)p.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 52

The remaining values of u in element-interior degrees of freedom can be obtained by inverting
(P · N1D

e)2 local matrices of rank p − 1. This means that the total cost of solving the CG
problem is

CCG = O
(
cgsolve(PN1D

e (P +N1D
e)p)

)
+ (PN1D

e)2 · O
(
(p− 1)3

)
,

where cgsolve(n) is the cost function of solving a sparse system of rank n with conjugate
gradients. The cost of the second term is small if the blocks of Mi are inverted and stored
during setup phase. The second term in the estimate assumes that the inverse of each
diagonal block of Mi costs as much as Gauss elimination/LU decomposition of a matrix of
rank p− 1, which has cubic time complexity.

HDG. The discrete transmission condition (35) generates a sparse system of rank

Nλ
HDG = (N edges

interpatch + P ·N edges
patch) · (p+ 1) = (2P (P − 1)N1D

e + P · 2N1D
e (N1D

e − 1)) · (p+ 1)

= 2PN1D
e (P +N1D

e − 2)(p+ 1).

In addition, we need to invert (PN1D
e)2 local systems lying in R(p+1)×(p+1) as in the CG case.

The backsolve is more expensive however, because we have d mixed variables q1, . . . qd in d
dimensions. The element local inversion can be again precomputed and stored during setup.

The overall cost of solving for all unknowns therefore scales as

CHDG = O
(
cgsolve(PN1D

e (P +N1D
e)(p+ 1))

)
+ (PN1D

e)2 · O
(
(p+ 1)3

)
.

Combined CG-DG Solver. The number of hybrid degrees of freedom on interfaces be-
tween patches is

Nλ
CG−DG = N edges

interpatch(p+ 1) = 2P (P − 1)N1D
e (p+ 1).

Each patch contains approximately (N1D
e p)2 interior degrees of freedom, hence the total cost

is
CCG−DG = O

(
cgsolve(P 2N1D

e (p+ 1))
)

+ P 2 · O
(
(N1D

e p)3
)
.

In the limiting case where each patch coincides with one single element (i.e. P := N1D
e and

N1D
e = 1), the three estimates CCG, CHDG and CCG−DG predict the same asymptotic cost.

4.4.3 Cost of Solving the Statically Condensed System

Standard HDG algorithm. The cost of linear solve in the PCG (preconditioned conjugate
gradient) solver will mainly depend on the cost of evaluating matrix-vector multiplications.
For a matrix of rank n, this cost is O(n2). Nektar++ solves the statically condensed system
in matrix-free manner by performing the above matrix-vector multiplications element-wise
and then summing them together. Suppose the (structured) mesh consists of quadrilaterals
in 2D and hexahedra in 3D. Furthermore, we will assume that the triangular mesh is obtained
by splitting each quadrilateral into 2 triangles and tetrahedral mesh is created by dividing
each hexahedron into 6 tetrahedra.

The number of trace degrees of freedom of one element is

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 53

• 3 · (p+ 1) for triangles

• 4 · (p+ 1) for quadrilaterals

• 4 · (p+1)(p+2)
2

for tetrahedra

• 6 · (p+ 1)2 for hexahedra

Under this assumption, one matrix-vector multiplication for the whole system (but performed
on element-wise basis) will take

• O
(
2(N1D

e)2
[
3 · (p+ 1)

]2)
= O

(
18(N1D

e)2(p+ 1)2
)

operations on triangles in 2D

• O
(
(N1D

e)2
[
4 · (p+ 1)

]2)
= O

(
16(N1D

e)2(p+ 1)2
)

operations on quadrilaterals in 2D

• O
(
6(N1D

e)3
[
2·(p+1)(p+2)

]2)
= O

(
24(N1D

e)3(p+1)2(p+2)2
)

operations on tetrahedra
in 3D

• O
(
(N1D

e)3
[
6 · (p+ 1)2

]2)
= O

(
36(N1D

e)3(p+ 1)4
)

operations on hexahedra in 3D

HDG applied to patches. Now suppose that the trace system is built between patches
and each patch has N1D

e × N1D
e quadrilaterals in 2D and N1D

e × N1D
e × N1D

e hexahedra in
3D. The number of unknowns on the trace of one patch now becomes

• 4 ·N1D
e · p in 2D (triangles and quadrilaterals) and

• 6 · (N1D
e)2 · p2 in 3D (tetrahedra and hexahedra),

which will require

• O
(
16(N1D

e)2 · p2
)

operations per matrix-vector multiplication in 2D and

• O
(
36(N1D

e)4 · p4
)

operations in 3D

This means that the PCG algorithm in CG-DG case scales one order worse when measured
in terms of number of elements along patch face

(
O
(
(N1D

e)4
))

than the standard HDG
algorithm

(
O
(
(N1D

e)3
))

. This can be seen in figure 22, where the asymptotic quantities
are visualised for the CG and mixed CG-DG method.

Remark 2. Note that the number on the surface of the patch is the same for triangles and
quadrilaterals and for tetrahedra and hexahedra, respectively. For a continuous expansion,
the number of DOFs on one quadrilateral face of a hexahedron is (p+1)2, and 2 · (p+1)(p+2)

2
−

(p+ 1) = (p+ 1)2 for two triangles covering the same quadrilateral face.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 54

5 10 15 20
p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

d
g
e
m

v
 c

o
st

 [
o
p
e
ra

to
rs

]

1e7

HDG, N 1D
e = 50

HDG, triangles
HDG, quadrilaterals
CG-DG, tri/quad

5 10 15 20
p

0

1

2

3

4

5

d
g
e
m

v
 c

o
st

 [
o
p
e
ra

to
rs

]

1e10

HDG, N 1D
e = 10

HDG, tetrahedra
HDG, hexahedra
CG-DG, tet/hexa

Figure 22: Asymptotic of matrix-vector multiplication measured by operation counts for
HDG and combined CG-DG methods.

4.4.4 Stage II: Interior Solve

The reconstruction of interior degrees of freedom involves the solution of a linear system
with the matrix

Ae =

Ne
b∑

l=1

τ (e,l)Ee
l −De

1 −De
2(

De
1

)T
Me 0(

De
2

)T
0 Me

The superscript e no longer refers to a single element as was the case of HDG. For CG-DG
method, all the blocks in A are a result of a continuous Galerkin discretization in the whole
partition/patch. The sparse matrix Ae is potentially large. Moreover however, presently
there does not appear to be a way to exploit the elemental decomposition of the patch in
inverting this matrix. We therefore expect that the explicit inverse of the system will be
dense, thereby requiring significant storage and very large initial setup costs.

4.5 Summary and outlook

In this section we have described our efforts in developing a mixed continuous-discontinuous
method in the context of solving simple linear elliptic problems. The derivation of weakly-
imposed Dirichlet boundary conditions has been extensively documented, and the conver-
gence properties have been examined and shown to be identical to those obtained with a
strongly-imposed condition. Moreover, the examination of existing methods for CG demon-
strates that these schemes are more practical in the sense that they are nearly parameter
free. Moreover, we envision that the use of these conditions will significantly aide in the
WP3 test cases, particularly in considering the investigation of a Formula 1 configuration in
the region of the contact patch.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 55

The results of our initial performance analysis indicate that, in its current form, the
CG-DG setting may not be a computationally tractable formulation when applied to elliptic
problems. Although our initial examinations in two dimensions proved promising, in that
the operator costs are comparable to either CG or HDG, in three dimensions we have shown
that the operator count and memory requirements increase significantly when compared to
the standard CG or HDG methods. We note that although the communications costs will
be significantly reduced in this setting, the increased operator counts will presently yield
too much additional work on each node to make the method computationally efficient, when
compared to CG or HDG.

However in the context of exascale hardware, in which FLOPS and memory bandwidth
are expected to significantly increase and be readily available, we feel that a more detailed
performance analysis is needed. We plan to conduct a further study where we impact the
effects of communication versus hardware with different FLOPS and memory bandwidth
characteristics. This will guide whether the further development of the algorithm will be
useful at this stage. If these studies demonstrate that the CG-HDG formulation is unlikely
to yield performance benefits, we have identified a number of areas that align with both the
goals of the project and the objective of increasing strong scaling in this task:

• Coarse space preconditioners for the pressure Poisson equation, which we note remains
as one of the original aims of this task (task 1.3.3). This is presently a barrier to
strong scaling. We intend to investigate techniques being developed as part of task 1.1
(AMR), external sparse multigrid solvers such as the Hypre library, as well as other
preconditioners based on reduced-order modelling presently being developed by EPFL.

• In combination with task 1.1, we have developed strategies for p-adaptive AMR sim-
ulations, and are developing coarse- and fine-scale preconditioners to accompany this
work. We will therefore look to evaluate these alongside the h-adaptive methods, with
a specific focus on load-balancing strategies to improve strong scalability of these sim-
ulations. A summary of our work on this topic thus far can be found in the recently
accepted conference proceeding of reference [48].

• We will evaluate the use of the ExaGS library currently being developed as part of
WP2 in order to reduce the communication overhead that can be found towards the
strong scaling limit.

The improvements that these techniques yield will then be assessed by examining the indus-
trial McLaren and ASCS test cases outlined in D3.2 as part of WP3.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 56

5 Data reduction

5.1 Introduction

The steady increase of available computer resources has enabled engineers and scientists to
use progressively more complex models to simulate a myriad of fluid flow problems. Yet,
whereas modern high performance computers (HPC) have seen a steady growth in computing
power, the same trend has not been mirrored by a significant gain in data transfer rates.
Current systems are capable of producing and processing high amounts of data quickly,
while the overall performance is oftentimes hampered by how fast a system can transfer
and store the computed data. Considering that CFD researchers invariably seek to study
simulations with increasingly higher temporal resolution on fine grained computational grids,
the imminent move to exascale performance will consequently only exacerbate this problem
[55]. The aim of this task is to minimize the impact of the I/O bottleneck on the overall
computing performance by reducing the amount of data transferred from memory to disk.
For this, the ’raw’ data produced by a flow field solver will be transformed to spectral space
and compressed by means of quantization and entropy encoding.

Figure 23: Stream-wise velocity field from
a numerical simulation of a plate flow at
Reθ,0 = 300.

Figure 24: Dyadic decomposition into
subbands for the streamwise velocity field
of a plate flow.

One way to alleviate the I/O bottleneck would be to reduce the number of time steps
which are written to the file system. While this trivial data reduction method may be
tolerable for simulations that reach a steady state solution after a minuscule amount of time,
the same approach would be fatal for highly transient physical phenomena. Considering
that most fluid flow problems are subject to diffusion, however, we can conclude that our
numerical datasets will typically be smooth and continuous, resulting in a frequency spectrum
that is dominated by lower modes (see Figure 23 and 24) [55]. Thus our best way forward
should be to use the otherwise wasted compute cycles by exploiting these inherent statistical
redundancies to create a more compact form of the information content. Since effective data
storage is a pervasive problem in information technology, much effort has already been spent

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 57

on developing newer and better compression algorithms. Most of the prevelent compression
techniques, however, are dictionary encoders (i.e. Lempel-Ziv encoding) that merely act upon
the statistical redundancies in the underlying binary data structure, unable to exploit the
spacial redundancies present in numerical datasets. Furthermore, these lossless compression
schemes are limited to a size reduction of only 10-20%, not allowing for a more efficient
compression by neglecting parts of the original data that contribute little to the overall
information content [42].

A prominent compression standard that allows for both lossy and lossless compression in
one code-stream, however, can be found in the world of entertainment technology. JPEG-
2000 is an image compression standard which is typically utilized to store natural and com-
puter generated images of any bit depth and color space (i.e. 16-bit grey scale images) [16].
Unlike the original JPEG standard, which is based on the discrete cosine transform (DCT),
the JPEG-2000 codec takes advantage of the the discrete wavelet transform (DWT) to re-
duce spacial redundancies during its compression stage [1]. While Fourier-based transforms
are simple and efficient in exploiting the low frequency nature of most numerical datasets,
their major disadvantage lies in the non-locality of their basis functions. Thus, if a DCT
coefficient is quantized, the effect of a lossy compression stage will be felt throughout the
entire flow field [13]. Discrete wavelet transforms, on the other hand, allow for the definition
of Regions of Interest (ROI) which are to be coded and transmitted with better quality and
less distortion than the rest of the flow field (see Figure 25)[1]. Furthermore, the dyadic
decomposition into subbands (see Figure 24) and JPEG-2000s entropy encoder (Embedded
Block Coding with Optimized Truncation) allows for the numercal dataset to be transmitted
with increasing sample accuracy or spatial resolution[16]. Finally, JPEG-2000s volumetric
extension (JP3D) translates these same capabilities to multi-dimensional datasets by ap-
plying the one-dimensional discrete wavelet transform along the axis of each subsequent
dimension (see Figure 26) [6].

Figure 25: ROI mask generation in the wavelet domain.

In this report we seek to provide an overview of the fundamental building blocks of the

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 58

Figure 26: 3-Dimensional dyadic decomposition into subbands[6].

JPEG-2000 Part 1 codec and its volumetric extension JP3D (section 5.2). Our focus will lie
on the transformation and quantization stage, since most of our efforts to adapt the JPEG-
2000 algorithm to floating point numbers have been spent on this part of the codec. The
aforementioned extensions, which expand JP3D’s capabilities to IEEE-754 floating point
datasets, will be explored in section 5.2.3. Preliminary compression results for a numerical
simulation of a plate flow will be shown. Finally, we conclude with some closing remarks in
section 5.5.

In a second part, we will evaluate existing methods, like proper-orthogonal decomposi-
tion (POD), singular value decomposition (SVD), dynamic-mode decomposition (DMD) and
emerging new ideas for the present task. Special attention will be paid to algorithms that
identify, extract and preserve physical structures in the flow field, like vortices and shear
layers, for instance. This alone has the potential of reducing the initial raw data by more
than an order of magnitude. SVD and DMD have already been surveyed in the last months.
We will hence give a summary of our results in this fields in sections 5.3 and 5.4.

5.2 JPEG-2000

The JPEG-2000 standard is divided into 14 parts, with Part 1 defining the core coding system
of the compression standard. Each subsequent Part, such as the volumetric extension JP3D,
translates the capabilities of the baseline codec to different fields of application [16]. Since we
are, for the most part, only interested in compressing three-dimensional numerical datasets,
we will limit our discussion to the baseline codec and its volumetric extension.

As depicted in Fig. 27, the first step in our compression stage is to generate a time-
frequency representation of the original data samples, which enables relatively simple quan-
tization and coding operations. It is worth noting that, given an invertible Transform T , this
step will not introduce any distortion in the decompressed dataset[16]. In the second step the
transformed samples are represented using a sequence of quantization indices. This mapping
operation introduces distortion in our decompressed data, since the set of possible outcomes

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 59

for each quantization index is generally smaller than for the transformed samples[1]. Finally,
the quantization indices are losslessly entropy coded to form the final bit-stream [52]. In
the following, the transform (sect. 5.2.1) and quantization (sect. 5.2.2) components are
discussed in more detail to allow for a more thorough discussion of the IEEE-754 extensions
in section 5.2.3.

5.2.1 Wavelet Transform

The transform is responsible for massaging the data samples into a more amenable repre-
sentation for compression. It should capture the statistical dependencies among the origi-
nal samples and separate relevant from irrelevant information for an optimal quantization
stage. As opposed to the baseline JPEG codec, JPEG-2000 employs a lifting-based discrete
wavelet transform, which allows for the full frame decorrelation of large scale numerical
datasets. This eliminates blocking artifacts at high compression ratios, commonly associ-
ated with the JPEG standard. Furthermore, the dyadic decomposition into multi-resolution
subbands enables the compression standard to assemble a resolution scalable codestream and
the definiton of Regions of Interests (ROI). Finally, the use of integer DWT filters allows for
both lossy and lossless compression in a single code-stream [52].

The lifting-based one-dimensional discrete wavelet transform is best understood as a
pair of low- and high-pass filters, commonly known as the analysis filter-bank. Successive
application of the analysis filter pair is followed by a down-sampling operation by a factor
of two, discarding odd indexed samples. The analysis filter-bank is designed in such a
manner that perfect reconstruction, barring any quantization error, is still possible after
the downsampling step. The low pass filter attenuates high frequency components in a one-
dimensional signal, resulting in a blurred version of the original dataset. This low-pass output
is typically highly correlated and thus can be subjected to further stages of the analysis filter-
bank. The high-pass filter, on the other hand, preservers the high frequency components,
which usually results in a sufficiently decorrelated high-pass signal. Consequently, most DWT
decompositions only further decompose the low-pass output, to produce what is known as a
dyadic decomposition [52].

The filtered samples, which are output from the transform operation, are referred to as
wavelet coefficients. To ensure the efficiency of the compression algorithm, these coefficients
are critically sampled by virtue of the downsampling operation. This means, that the total

 Original
Image Data

Compression Stage

 Compressed
Image Data

Discrete Wavelet
Transform

Uniform Quantizer
with Deadzone

Adaptive Binary
Arithmetic Coder

Bit-stream
Organization

Figure 27: Fundamental building blocks of the JPEG-2000 compression stage[52].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 60

number of wavelet coefficients needs to be equal to the number of original signal samples.
Thus, when the DWT decomposition is applied to an odd-length signal, either the low- or
high-pass sequence will have one additional sample. This choice is dictated by the position
of the odd-length signal in relation to the global coordinate system[44].

Having described the general ideas behind the transform step, we now introduce the
specific wavelet transformed described by the JPEG-2000 standard. The reversible transform
option is implemented by means of the 5-tap/3-tap filter-bank described in equation (2.1). It
is a nonlinear approximation of linear lifting steps which efficiently map integers to integers.
The 5/3 filter allows for repetitive en- and decoding without information loss, barring any
distortion that arrises due to the decompressed image values being clipped, should they fall
outside their full dynamic range[16].

y(2n+ 1) = x(2n+ 1)−
⌊
x(2n) + x(2n+ 2)

2

⌋
,

y(2n) = x(2n)−
⌊
x(2n− 1) + x(2n+ 1) + 2

4

⌋
.

(48)

While the 5/3 bi-orthogonal filter-bank is a prime example for a reversible integer-to-integer
transform, its energy compaction, due to its nonlinearity, usually falls short of most floating
point filter-banks. The most prominent real-to-real transform is the irreversible 9-tap/7-tap
filter-bank described in equation (2.2)[52].

y(2n+ 1)← x(2n+ 1) + (−1.586× |x(2n) + x(2n+ 2)|),
y(2n) ← x(2n) + (−0.052× |y(2n− 1) + y(2n+ 1)|),
y(2n+ 1)← y(2n+ 1) + (0.883× |y(2n) + y(2n+ 2)|),
y(2n) ← y(2n) + (0.443× |y(2n− 1) + y(2n+ 1)|),
y(2n+ 1)← −1.230× y(2n+ 1),

y(2n) ← (1/1.230)× y(2n),

(49)

To ensure the perfect reconstruction property of the wavelet transform, the undefined
samples outside of the finite-length signal segment need to be filled with values related to
the samples inside the signal segment. When using odd-tap filters, the signal is symmetrically
and periodically extended as shown in Figure 28[40].

95... 128 255 128 95 77 89 122 89 77 ...

symmetric point symmetric point

Leading boundary Trailing boundary

Figure 28: Symmetric extension at the leading and trailing boundaries of a signal segment.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 61

∆b ∆b 2∆b ∆b ∆b

−2 −1 0 1 2qb(u, v)

y(u, v)

Figure 29: Uniform scalar quantizer with deadzone

5.2.2 Quantization

Unlike its predecessor, the JPEG-2000 algorithm employs a central deadzone quantizer (Fig.
29) to reduce the inherent entropy in the wavelet coefficients. This reduction in precision
is lossy, unless the quantization stepsize is set to 1 and the subband samples are integers.
Each of the wavelet coefficients yb of the subband b is mapped to the quantization value qb
according to the formula [16]:

qb = sign (yb [n])

⌊
|yb [n]|

∆b

⌋
. (50)

the stepsize ∆b is calculated as follows:

∆b = 2Rb−εb
(

1 +
µb
226

)
,

0 ≤ εb < 26, 0 ≤ µb < 226.
(51)

where εb is the exponent and µb is the mantissa of the corresponding stepsize and Rb repre-
sents the dynamic range of the subband b. This limits the largest possible stepsize to twice
the dynamic range of the subband. In case of a reversible coding path, ∆b is set to one by
choosing µb = 0 and Rb = εb[16].

5.2.3 Extensions

One of the downsides of using image compression codecs is that they have been designed
for integer datasets and do not allow for the lossy and lossless encoding of IEEE 754 double
precision floating point numbers. The following section will give an overview of the pro-
posed extension that have thus far been tested to alleviate this problem, with section 5.2.4
describing the fixed point number format Q and section 5.2.5 giving an overview over the
Shape-Adaptive Discrete Wavelet Transform.

For testing the different algorithms we used the dataset from a numerical simulation of
a flat plate flow at Ma∞ = 0.3 and Ma∞ = 2.5 (Fig. 30). The spatial resolution of the
numerical grid was set to nx×ny ×nz = 3300× 240× 512 nodes in streamwise, wall-normal
and spanwise directions respectively. The file size for one time step and the conservative
variables ρ, ρu, ρv, ρw,E amounted to 16,220,192,238 bytes. Each file was divided into 1664
‘tiles’, with each tile being transformed and encoded separately. To evaluate the overall

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 62

Figure 30: Numerical setup for the simulation of a flat plate flow at Ma∞ = 0.3 and
Ma∞ = 2.5[65].

quality of the decompressed file we used the peak signal-to-noise ratio metric (PSNR), which
is evaluated as

MSE =
1

ijk

i∑
x=1

j∑
y=1

k∑
z=1

|I(x, y, z)− I ′(x, y, z)|2 ,

PSNR = 20 · log10(
1√
MSE

).

(52)

where I(x, y, z) is the original, I ′(x, y, z) the decompressed image and i, j, k the dimensions
of the volumetric dataset. The PSNR is expressed in dB (decibels). Good reconstructed
datasets typically have PSNR values of 30 dB or more. We ran our experiments on a single
core of an Intel Core i7-6700 processor with 3.40GHz and 32 GB of 2133 MHz DDR4 RAM.

5.2.4 Fixed Point Number Format

Our first approach to handle floating point values was to use the fixed point number format
Q, which maps the floating point values onto the dynamic range of a specified integer type
(i.e. 64bit) [41]. To this end, the conservative variables ρ, ρu, ρv, ρw,E were first aligned
with regards to their largest floating point exponent, which are stored uncompressed in the
header of the codestream. We used a Q8.23 two’s compliment format that allows numbers
in the range [−255, 255) to be represented. Although the normalized floating point values lie
in a smaller range (−1,+1), the additional dynamic range was added to prevent an overflow
of the variables during the transform stage.

The fixed point number format provides a good first step on the way to efficiently store
large three-dimensional datasets. Figure 31 shows an overview of the original (a) and com-
pressed (b) direct numerical simulation (DNS) for a turbulent flat plate flow at Ma∞ = 0.3,
Figure 33 for a turbulent flat plate flow at Ma∞ = 2.5. A closer look at the flow structures
identified by the λ2-criterion can be found in Figure 32 and Figure 34. The compression
ratio for the simulation at Ma∞ = 0.3 measured 17 : 1 with a PSNR of 37.5, while the

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 63

compression ratio for the simulation at Ma∞ = 2.5 measured 15 : 1 with a PSNR of 42.1.
The average compression time amounted to 936s with each tile taking up roughly 0.6s of
processing time. In comparison, the compression ratio for the lossless LZMA Algorithm
(7-Zip) measured only 1.2-1.3:1, with an average compression time of 1743s.

Overall the Q number format offers good compression ratios with reasonably well recon-
struction of the numerical datasets. Due to the floating point arithmetic and the many-to-one
mapping, however, information will be irreversibly lost during the preprocessing of the data
samples and thus true lossless compression cannot be achieved. Furthermore, the entropy
encoder is unable to take full advantage of its optimal truncation algorithm since a large
part of the quantization (fixed point number transformation) falls outside of its purview.
To circumvent this problem we planned to split the floating point datasets into its sign, bit
and mantissa integer fields and compress them separately with a Shape-Adaptive Discrete
Wavelet Transform.

5.2.5 Shape-Adaptive Discrete Wavelet Transform

In order to motivate the Shape-Adaptive Discrete Wavelet Transform (SA-DWT) extension,
we begin this section by studying the evolution of the biased exponent and mantissa for a
sequence of single precision floating point numbers xi = i/32. Figure 35a shows the biased
exponent and 35b the mantissa for the set {xi : |i| < 128, i ∈ Z}. While the biased exponent
in Figure 35a exhibits discontinuities between two intervals of a constant exponent, with a
large discontinuity at x0 = 0, the biased exponent only varies slowly between values of 122
and 128. The result is a frequency spectrum that is dominated by lower modes, which in
turn should allow the wavelet transform to decorrelate much of the signal. The mantissa, on
the other hand, exhibits linear change within intervals of a constant exponent. Similar to
the biased exponent, the wavelet transform should be able to decorrelate much of the signal
were it not for the large discontinuities at the intervals between two different exponents. The
IEEE-754 representation, however, is highly non-linear. The distance between consecutive
floating point numbers depends on the value of their exponent, inevitably introducing high-
frequency signals into the mantissa field. This in turn results in large coefficients for the detail
subbands of the wavelet decomposition, thus degrading the overall compression efficiency
[27].

This could be addressed by applying a SA-DWT inside the smooth regions of the biased
exponent and mantissa field (Figure 36 and Figure 37). For the sign field, the wavelet trans-
form can be applied everywhere since it features no discontinuities. The biased exponent
field, however, is divided into regions where all sample values are either equal to or different
from zero. Lastly, the mantissa field is split into regions that are characterized by having
associated sign and exponent values which are constant. Each region is treated as its own
independent image, which is symmetrically extended and downsampled accordingly. Fur-
thermore, the zero regions of the exponent field are to be signaled in the codestream header
in order to allow a JP3D reader to fully decode the sign, biased exponent and mantissa
fields[27].

During our investigation, however, it transpired that this approach only works as long as

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 64

(a) Original

(b) Compressed

Figure 31: Original (a) and Compressed (b) DNS of a turbulent flat plate flow at Ma∞ = 0.3.
Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration of the isosurface
according to the wall normal distance y[65].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 65

(a) Original

(b) Compressed

Figure 32: Close-up of the Original (a) and Compressed (b) DNS of a turbulent flat plate
flow at Ma∞ = 0.3. Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration
of the isosurface according to the wall normal distance y[65].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 66

(a) Original

(b) Compressed

Figure 33: Original (a) and Compressed (b) DNS of a turbulent flat plate flow at Ma∞ = 2.5.
Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration of the isosurface
according to the wall normal distance y[65].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 67

(a) Original

(b) Compressed

Figure 34: Close-up of the Original (a) and Compressed (b) DNS of a turbulent flat plate
flow at Ma∞ = 2.5. Flow structures identified by the λ2-criterion for λ2 = −0.15. Coloration
of the isosurface according to the wall normal distance y[65].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 68

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

20

40

60

80

100

120

140

(a) Biased Exponent
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(b) Mantissa

Figure 35: Evolution of the biased exponent and mantissa fields for a uniform sequence of
single precision IEEE 754 numbers

Figure 36: Exponent field of the stream-
wise velocity from a numerical simulation
of a plate flow at Reθ,0 = 300.

Figure 37: Mantissa field of the stream-
wise velocity from a numerical simulation
of a plate flow at Reθ,0 = 300.

in the smooth regions SA-DWT is applied to remain larger than one pixel and the signal seg-
ment starts at an even numbered position. If this is not the case the shape-adaptive wavelet
transform will introduce a phase shift in the wavelet coefficients and subsequently distort the
shape of the subband images. Since the compression algorithm applies the wavelet decom-
position on multiple lower resolution approximations of the original dataset, the likelihood
of this happening every time a compression is attempted is very high. This in turn will
result in a faulty entropy encoding stage since the Embedded Code Block-Encoder expects
the sub-bands to be rectangular.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 69

5.3 SVD

We note that this section is an extended version of the details provided in D1.1.

5.3.1 Description of the method

SVD is one of the most useful tools in matrix algebra and includes the concept of the
eigenvalue/eigenvector decomposition as prerequisite for data/dimension reduction. We start
with the definition of SVD. The SVD is the expression of any m × n matrix A of rank
r (r ≤ min(m,n)) in the following form [22]

A = UΣV T ,Σ = diag(σ1, σ2, . . . , σr), (53)

where the columns of U and V are orthonormal with UTU = I = V TV as well as Σ is a
diagonal matrix of positive numbers σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. An equivalent way of writing
is:

A =
∑

urσrv
T
r . (54)

We can also find the fundamental theorem of SVD as shown in Figure 38 . The vectors
ur of an orthonormal U , called the left singular vectors, are the eigenvectors of AAT with
the associated eigenvalues σr. The vectors vr of orthonormal V , called the right singular
vectors, are the eigenvectors of ATA with the same associated eigenvalues σr.

Figure 38: The form of SVD

Assume that we want to represent a very huge matrix A by its SVD components U ,
Σ and V and that these matrices are also too large to store. The best way to reduce the
dimensionality of the three matrices is to set the smallest of the singular values to zero.

There are some excellent software packages available for obtaining the SVD in a nu-
merically accurate manner. In particular, the LAPACK (Linear Algebra Package) library
provides much of the functionality needed for dense matrices. A parallel version of the
LAPACK functionality is available in the ScaLAPACK (Scalable Linear Algebra Package)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 70

library, which is designed for message passing parallel computers and can be used on sys-
tem that supports MPI. In the field of dimension reduction, the LAPACK and ScaLAPACK
libraries provide high-performance implementations of several versions of SVD for dense ma-
trices. Cray provides libraries for scientific computing in its libsci library, which includes
LAPACK as well as ScaLAPACK and is loaded by default. The SVD has been tested with
these implementations of LAPACK and ScaLAPACK on our Cray XC40 (Hazel Hen).

The SVD is strongly connected to the eigenvalues of symmetric matrices ATA and AAT ,
where

AT = V ΣTUT . (55)

Because Σ is a diagonal matrix, transposing it has no effect. Thus

ATA = V Σ2V T . (56)

The formulation is shown in Figure 39. In this case only right singular vectors V and
eigenvalues Σ remain to be computed. Since the rank of A is k, all other eigenvalues will be
zero, so that the data could be reduced.

Figure 39: The SVD of matrices ATA

An implementation of the SVD for large sparse matrices is available through ARPACK
(Arnoldi Package), which has also been used to test the SVD algorithms on Hazel Hen.

In many CFD simulations, data structures commonly have more than two dimensions,
and are usually represented by multidimensional tensors. The different “dimensions” of
tensor could also be called modes. So far, the above described 2-mode method SVD is wide-
spread and of great significance in development of mathematics and statistics. However, it
does not take the multidimensionality of data into account. In the last years, the mathemat-
ical theory and several new algorithms have been fast developed for the multidimensional
tensors. Here gives an introduction to one of such tensor methods, i.e. the higher-order
singular value decomposition (HOSVD). For simplicity, we present HOSVD of a 3-mode ten-
sors at first. The HOSVD of the (m× n× p)-tensor A is visualized in Figure 40 and can be
written as

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3), (57)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 71

where S is a smaller 3-mode (r1×r2×r3)-tensor and usually referred to as the core tensor.
It has the property of all-orthogonality: any two slices of S are orthogonal in the sense of
the scalar product. r1, r2 and r3 are the ranks in each direction i, j and k. U (1) ∈ R(m×r1),
U (2) ∈ R(m×r2), and U (3) ∈ R(m×r3) are orthogonal matrices. And ×1 is 1-mode product of
tensor.

Figure 40: HOSVD expansion of the 3-mode tensor

Then we extend the HOSVD to the general multidimensional tensor. For every n-mode
tensor A the HOSVD was proposed by Lathauwer et al. [39] as follows:

A = S ×1 U
(1) ×2 U

(2) ×3 · · · ×n U (n), (58)

in which S is a new n-mode tensor, ×n is n-mode product of tensor, and U (n) is a unitary
matrix obtained by applying SVD to n-mode unfolding matrix.

5.3.2 Outlook

In the next step, other similar mechanisms will be studied and the data-reduction strategies
will be implemented and tested in three-dimensional ExaFLOW’s use cases.

5.4 Dynamic Mode Decomposition

We note that this section is an extended version of the details provided in D1.1.
The simulation of unsteady fluid flows is essential to predict expected and unexpected

features of the systems to be analysed. It is not clear how to extract all the special features
of the simulated flow in terms of (quasi-)periodicity or invariance or dominant modes. This
applies in different ways to all unsteady processes in nature, technology and economy. Their
are several algorithmical approaches for analysis as defining averages, extracting dominant
frequences by Fourier Analysis of the signal, Principal Component Analysis (PCA), Proper
Orthogonal Decomposition (POD) or Empirical Orthogonal Functions (EOF) in climatology

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 72

(see http://brunnur.vedur.is/pub/halldor/PICKUP/eof.pdf). The mathematical kernel of
these is the same. Somes years ago a new approach has been given to analyze a large set of
time dependent signals especially related to fluid flows by the Dynamic Mode Decomposition
(DMD) method of Peter Schmid. This DMD turned out to decompose a time signal a
linear combination of different modes multiplied by the k-the power of an complex value for
getting the k-th time step. Williams, Kevrekides and Rowley [66] generalized the approach
to Extended DMD and gave a relation to the Koopman operator [35], which again gives the
opportunity to apply techniques of the functional analytic ergodic theory, see [21] and [7].
The Koopman operator is directly related to the the nonlinear equation of interest, here the
Navier-Stokes equations. The Koopman operator acts on an infinite dimensional space of
observables. As linear and bounded operator it has a spectrum and may have eigenfunctions
in the space of observables, which can be interpreted in terms of (here) the fluid flow. Under
some circumstances DMD might give approximations of some eigenvalues and eigenfunctions
of the Koopman operator.

5.4.1 Analysis

Assume K a compact topological space and a continuous nonlinear operator

ϕ : K −→ K (59)

In this context K is part of the discrete function space containing the discrete time steps of
the iterations given by the discrete Navier-Stokes operator ϕ. Assume F ⊂ C (K) being a
linear subspace of ”observables” with the stability property

f ∈ F ⇒ f ◦ ϕ ∈ F (60)

Observables are e.g. the mean pressure of a fluid domain or the evaluation operators δx at
all points x ∈ Ω for continuous functions defined on the domain Ω. The operator Tϕ defined
by

Tϕ : F −→ F (61)

f 7→ Tϕf = f ◦ ϕ (62)

is named the Koopman-Operator of ϕ on F (B.O. Koopman 1931) Tϕ is linear and
continuous and has a spectrum, but acts on an infinite dimensional space. It may have
eigenvalues and eigenfuctions in F (not in K!). For two eigenvalues also their product is an
eigenvalue if the product of both eigenfunctions is also element of F and is not disappearing.

The eigenfunctions fulfill Schröders functional equation

f (ϕq) = λf (q) ∀ q ∈ K

It might be a problem to interpret this equation in terms of a physical phenomenon. Inter-
esting enough is the idea, that isosurfaces of |λ| remain isosurfaces after application of the
operator ϕ [7].

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 73

To make the operator Tϕ manageable for numerical purposes, it is important to find a
small space of observables F . The smallest reasonable numerical setting is to investigate the
finite sequence

Gf (q) =
[
gfk (q)

]
k=0,··· ,n

=
[
f
(
ϕkq
)]
k=0,··· ,n (63)

for a single observable f (this might be even a vector of observables) starting with an arbitrary
state q ∈ K, a first finite part of a trajectory. Starting with q

′
= ϕjq is also a reasonable

option enforcing the significance of a shifted sequence on the same trajectory. A finite number
of linearly independent observables S can be combined as a vector of observables. Explicit
knowlegde of the operator ϕ is not needed for numerical handling; to know the effect of the
operator on the state space as measured by the observables is sufficient.

The convolution product of two polynom-coefficient vectors c with deg c = p and b
with deg b = q is the given by the product polynom

c ∗ b (λ) = c (λ) b (λ) ∀ λ ∈ C. (64)

The convolution-matrix An(c) for a coefficient vector c of deg c = p is

A(c) = An(c) =

0 n− p
0 c0

1 c1
. . .

. . c0

. . c1

p cp
...

.
. . .

n cp

(65)

Let c be the coefficient-vector of a polynom with deg c = p (cp 6= 0). The convolution
matrix acts as the convolution product (deg b = n− p)

A(c) b = c ∗ b (66)

Let G the matrix of series of measurements or a contiguous finite part of observables
applied to the sequence of states in K. Let c a polynom coefficient vector with a degree
deg c = p not larger than the sequence. We multiply G with the convolution matrix

G An(c) = R (67)[
g0 g1 g2 · · · gn

]
An(c) =

[
r0 r1 · · · rn−p

]
(68)

That is the same as multiplying all possible n − p contiguous fractions of G by c from the
right and building a new matrix with n− p vectors. We expect c selected in a way, that R

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 74

is small in some sense, best would be R = 0. To analyse this, we decompose G in two parts
related to c

G = Gmodes + ∆G (69)

The first part Gmodes will be given by a linear decomposition in modes defined by the roots
of c with the property

Gmodes A(c) = 0 (70)

It will described later. The second part defines the defect in equation (67) given by

∆G A(c) = R (71)

We assume that Im ∆G ⊂ ImR. There are some not unique but reasonable requirements in
selecting ∆G. We restrict ∆G to be

∆G = R (A(c)∗A(c))
−1

A(c)∗ (72)

With these assumptions we get by (67)

∆G = G Q (73)

for the selfadjungated projection Q (Q∗ = Q = Q Q)

Q = A(c) (A(c)∗A(c))
−1

A(c)∗ (74)

with the property

(I −Q) A(c) = 0 (75)

for Gmodes we have by (75)

Gmodes = G−∆G = G−GQ = G (I −Q) (76)

and therefore

0 = Gmodes A(c) =
[
g̃0 g̃1 . . . g̃n

]
A(c) (77)

We can show that this allows a decomposition in p Koopman modes vl

Gmodes =
[
g̃0 g̃1 . . . g̃n

]
=

p∑
l=1

vl
[
1, λl, λ

2
l , . . . , λ

n
l

]
(78)

with the modes

vl = Gmodes
1

wl (λl)

[
wl
0

]
(79)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 75

given by the polynom

c (λ) = (λ− λl)wl (λ) ∀ λ ∈ C or c = wl ∗
[
−λl

1

]
(80)

We quantify now the l2-norm ‖∆G‖2 of the defect operator ∆G. Taking µ = ‖∆G‖2
2 we

have to analyse the operator inequality

∆G∗∆G ≤ µ I (81)

or by (73)

Q∗ H Q ≤ µI (82)

with the covariance matrix H = GT G and the projection Q in (74). Because A(c) has full
rank, this is equivalent to find a minimum µ > 0 fulfilling

A(c)∗ H A(c) ≤ µ A(c)∗ A(c) (83)

we summarize

Theorem 1. Given is an arbitrary coefficient vector c with deg c = p. Assume that the
polynom c has no multiple roots. We can decompose G in two parts

G = Gmodes + ∆G (84)

where for ∆G = G Q with Q = A(c) (A(c)∗A(c))
−1

A(c)∗ fulfilling the requirements (72)
we have ‖∆G‖2 ≤

√
µ iff

A(c)∗ H A(c) ≤ µ A(c)∗ A(c) (85)

For the roots λl of c and vl = 1
wl(λl)

Gmodes

[
wl
0

]
with

c = wl ∗
[
−λl

1

]
(86)

and the part of modes

Gmodes =

p∑
l=1

vl
[
1, λl, λ

2
l , . . . , λ

n
l

]
(87)

The complex vectors vl (q) =
(
vfl (q)

)
f∈S

are named Koopman modes [7].

The p roots provide different behaviour: |λl| = 1 for unsteady but stable modes (typical);
|λl| < 1 for disappearing modes; |λl| > 1 for unstable modes. A system with such a mode
cannot be stable.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 76

It is possible to calculate a provisional c, delete any unwanted root as long as µ remains
small. The degree of c should be small to limit the number of modes; on the other hand
a small degree enlarges the approximation error µ. We have an algorithm minimizing µ
and calculating c for a given degree p. This algorithm is still inefficient. Remark, that the
classical DMD formulation of [56] is a special case for p = n.

Important for calculations for discretized partial differential equations is, that whereas G
is a very large matrix with many rows, H is a quadratic matrix having the number of time
steps as dimension.

5.4.2 Simplified approach

Applying the trace on both sides of this operator inequality, we get by definition of H =
GT G for the j-th shifted row Gj =

[
g0+j g1+j . . . gn+j

]
1

n− p+ 1

n−p∑
j=0

∥∥Gj c
∥∥2 ≤ µ

n− p+ 1

n−p∑
j=0

‖ c ‖2 = µ ‖ c ‖2 (88)

or with the collapsed matrix Hn−p which is composed by a sum of shifted submatrices of H

Hn−p =
1

n− p+ 1

n−p∑
j=0

(
Gj
)T
Gj (89)

we have

< Hn−p c , c > ≤ µ ‖ c ‖2 (90)

µ is not smaller than the largest eigenvalue of Hn−p

The coefficient vector c can be defined as the eigenvector of the minimal eigenvalue of
the positive semidefinite matrix Hn−p

Hn−p c = µmin c (91)

µmin underestimates µ in (85) The matrix Hn−p can simply derived from the matrix H. The
computational effort is relatively small. This procedure is an alternative to the procedure
described before but has shortcomings. The vector c generated by this procedure might be
not the best in sense of (85). It might introduce additional unwanted eigenvalues. Important
is a small eigenvalue µ.

5.4.3 Ensembles

Summing up matrices of type H in (85) allows to handle all matrices together by a common
polynom coefficient vector c.

<
1

imax

imax∑
i=1

Hi c , c >
?
≈ 0

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 77

0 n− p n

0

n− p

n

Figure 41: shifted submatrices as part of the total matrix

If such a vector with the involved roots exist, the ensemble starting with different start
vectors or parameters can be compared with respect to a common decomposition. The
approximative spectrum is common to all sets. the respective eigenvectors follow from the

common spectrum by multiplication of the 1
wl(λl)

[
wl
0

]
with the individual approximative

measurements Gi
modes. This enables for extraction of common relevant features of ensemble

calculations.

5.4.4 Koopman eigenfunctions

The finite approximative decomposition (87)

N0 3 k 7→ gk (q) =

p∑
l=1

vl (q) λ k
l (92)

allows to calculate Koopman eigenfunctions for this approximative sequence. Remember
gfk (q) = f

(
ϕkq
)

in (63) and the number of essential roots p. This describes the iterative
development with respect to index k of all observables in S by modes λl (Ritz values), which
are common for different starting values q and observables f . We have given an computable
estimation of the error.

Rewriting equation (63) by stacking (0 : p) subsequent elements leads to
gk (q)
gk+1 (q)

...
gk+p (q)

 =

p∑
l=1

vl (q) λ0

l

vl (q) λ1
l

...
vl (q) λpl

λ k
l =

p∑
l=1

vl (q)

λ0
l

λ1
l
...
λpl

λ k
l (93)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 78

Multiplying from the left by a vector u∗ =
w∗i

wi(λi)
d∗, where wi is the same polynom

coefficient vector of degree p − 1 as in (86) with wi (λl) = 0 ∀ l 6= i and di is an arbitrary
vector, this transforms the decomposition to the action on the single mode i

u∗i

gk (q)
gk+1 (q)

...
gk+p (q)

 =

p∑
l=1

d∗i vl (q)
wi (λl)

wi (λi)
λ k
l = d∗i vi (q)λ

k
i (94)

Returning back to the definition (63) of gfk (q) = f
(
ϕkq
)

u∗i

f
(
ϕk ◦ ϕ q

)
f
(
ϕk+1 ◦ ϕ q

)
...

f
(
ϕk+p ◦ ϕ q

)
 = d∗i vi (q)λ

k+1
i = λiu

∗
i

f
(
ϕkq
)

f
(
ϕk+1q

)
...

f
(
ϕk+pq

)
 (95)

showing, that u∗i
[
f ◦ ϕk+j

]
j=0,··· ,p is a Koopman eigenfunction for the eigenvalue λi on the

trajectories starting with q ∈ Q. Given eigenvalues λi this does not dependent on q ∈ Q nor
on f . Remarkable is, that the eigenfunction is composed by the values only on the specific
trajectory belonging to q ∈ Q. Because di is an arbitrary vector, the eigenspace belonging
to λi is as large as the dimension of the linear space generated by the observables f ∈ S.

5.4.5 How to realize the Koopman related Dynamic Modes approach?

The covariance matrix H = GTG has to be calculated together with its spectrum and
partially also with the eigenvectors. They may also serve as decomposition vectors for POD.
The matrix is relatively small, as the diagonal is given by the number of analysed time steps.
But the calculation might be very time consuming and expensive. Because the stiffness
of the product matrix is much higher than the stiffness of the singular values of G, it is
reasonable to calculate the singular value decomposition of G as for the original DMD or to
calculate the QR-decomposition of G. For very large problems with many grid points this
might be to time consuming. In these cases approaches by iterative techniques as Arnoldi
procedures could be investigated. In any case parallel input and output in combination with
the algorithms to get and to use the data is important and will be investigated.

5.4.6 Implementation and Experiences

The spectral theory of the Koopman operator expects eigenvalues (even the total spectrum)
to be part of the unit disk. Eigenvalues outside of the disk would imply, that the operator
ϕ would not reside on a compact domain or with other words, the discretization operator
used would not be stable. Approaches as DMD do not ensure this property in any case.
We developed a mechanism to get only eigenvalues with modulus not exceeding 1. It turns

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 79

out, that also the other calculated eigenvalues essentially dependent on this property. We
found empirically, that for some of the eigenvalues λ also the multiples λl for l = 1, 2, 3, · · ·
are eigenvalues as predicted by the Koopman-operator theory. This is only true in an ap-
proximative sense and only for a few, but shows an interesting property for the underlying
nonlinear systems as these will have harmonic properties. Each frequency implies its multiple
frequencies related to their Koopman-modes.

The Koopman-modes as calculated from fluid flow simulation experiments look as smooth
as the flow itself at least for smaller frequencies. Under certain conditions they earn lin-
ear properties from the fluid flow. For example the modes are underlying linear boundary
conditions or are divergence free if they are calculated from iterated velocity fields of an
incompressible flow.

We implemented VTKoutput for animated visualization of the generated modes by Par-
aview. Data may be given in a simple neutral format. Data given in VTKformat may also
be analysed.

We have done first tests. The code is not yet parallelized for analysis of large data sets.
First approach will be the (simple) parallelization of dense matrix-matrix products which
need a large amount of computing time.

5.5 Conclusions and Future Work

In the preceding sections, we described two extensions to the JPEG-2000 compression algo-
rithm, which we hoped would allow for the lossy and lossless encoding of IEEE-754 double
precision floating point numbers. Based on the results of our study we found, that neither
of these two extension are satisfactory for our ultimate goal of a true IEEE-754 compres-
sion algorithm. While the Q number format offers good compression ratios with reasonably
low signal distortion, it is unable to compress the numerical dataset losslessly and therefore
might limit the ultimate usability of the codec. The Shape-Adaptive Discrete Wavelet trans-
form, on the other hand, proved to be unsuitable for decorrelating arbitrarily shaped regions
within our numerical domain and is thus unsuitable for the task at hand.

Our hope is that intraband prediction methods, which are used in the High Efficiency
Video Coding Standard (HEVC), could instead be used to overcome the efficiency problem
when compressing the sign, biased exponent and mantissa fields [63]. We will also investigate
higher order signal transforms which allow for the efficient transformation of images with
smooth regions separated by smooth boundaries.

We have further described algorithms and their mathematical background generalizing
the Dynamic Modes Decomposition of [56] with a clear relation to eigenfunctions of an
appropriate Koopman operator and showed how to handle ensembles and have taken first
steps for implementing the necessary procedures. Efforts to interpret the mathematical and
physical properties of the Koopman-modes are ongoing.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 80

6 Fault tolerance and resilience

Faults caused by malfunctioning hardware are placed into two overall categories, soft and
hard node errors. Hard errors are faults that lead to the complete failure of a node. Common
reasons being a bad power supply, a failed network interface card, or simply unexplained
reboots. Typically a hard error involves only a single node, but in particular if critical
infrastructure is shared among multiple nodes, such as a power supply units, occasionally
hard errors do affect more than one node at a time. Soft errors on the other hand are all
related to storage elements in the form of spurious bit-flips. A significant source of soft errors
arise from energetic particles interacting with the silicon subtract that either flip the state of
a storage element or disrupt the operation of a logic circuit. Such events may lead to a silent
data corruption (SDC), i.e., no warning or exception is raised but data has been corrupted.
Depending on the location of the SDC, it may lead to an event that over the course of many
compute cycles turns into a hard error. An extensive overview of challenges in addressing
fault-tolerance for future exascale computing systems is given in [60] and [9] along with an
overview of sources and potential ways if mitigating the problems.

Faults that begin as soft-errors but eventually propagate into hard-errors have been
a major issue in the past, in particular during the early days of building clusters based
on commodity hardware. In a number of notable cases, radiation sources were shown to
be the culprit in rendering, at the time being, very large scale clusters useless [28]. On
todays clusters, all components from memory to CPUs to networks have some form of error
correcting code build in. This does however not mean that soft-errors and SDCs have become
non-issues. Some logic units, particularly with-in CPUs are prohibitively expensive to protect
with error-correcting code.

There exists a large body of published research on handling SDC type errors from an
application perspective. Many fault tolerant versions of commonly used algorithms in com-
putational science, such algorithm based fault tolerance for general matrix operations [31],
or more specific algorithms designed for certain iterative solvers such as those presented in
[58, 54] among many others have been proposed. However, few of these algorithms have
made it into practical applications, the typically attitude towards SDC resilience appears to
be to simply assume that such errors are so rare that they may as well be ignored, favoring
the simple solution of doing a re-run if the computational output looks dodgy. This approach
raises questions on the trustworthiness of numerical simulations performed. In addition it is
worth noting that not only the cost of an SDC induced re-run, but also the probability of
needing such a re-run both scales linearly with the size of the machine, therefore, this naive
approach may not be acceptable on future exascale systems.

Whilst the work on algorithm based fault-tolerance is quite extensive, the amount of
publications on quantifying the rate at which SDC type errors occur on modern day clusters
is somewhat limited in comparison. In [62, 61] the authors present a study on soft-errors
occurring in the DRAM measuring error rate ECC, reporting rates of correctable and not
correctable errors. As for CPUs, in [11] the authors present a study on the occurrence of soft-
errors when irradiating a Power BQC 16C chip with high-energy particles during execution.
They use the measurements to project actual long term failure rate for larger-scale HPC

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 81

systems. They project using the irradiation experiments the mean time between errors at
sea level of the SRAM-based register files and Level-1 caches for a system similar to the
scale of Sequoia system with roughly 1.6 million cores to be approximately 1.5 days. The
numbers suggest that the extensive hardware based error correction in modern systems is
doing a good job making SDCs somewhat infrequent even on Petascale systems. When SDCs
do happen, they may have no measurable impact, depending on the location of the fault,
as many iterative algorithms used widely in computational science are inherently soft error
resilient [57]. Whilst the impact of SDCs on production code remains somewhat speculative,
hard errors already present a very real challenge on large compute clusters[60]. Having
at least some form of rudimentary fault-tolerance is essential for running code that scales
to the full size of peta-scale systems. Simplistic approaches are unlikely to scale exascale
systems. Even if the compute nodes in a potential exa-scale system would have an individual
MTBF (Mean Time Between Fealure) of a century, a machine with 100.000 such nodes would
encounter a failure every 9 hours on average[19]. This being shorter than the execution time
of many HPC applications. For the reasons mentioned we have decided to focus our efforts
on hard errors, applying current state-of-the-art to Nektar++, improving upon techniques.

6.1 Check-pointing for Resilience

For current distributed memory applications, fault tolerance is most commonly achieved
by simply periodically saving a solution state to a checkpoint file. These check-points are
written to reliable storage, typically a parallel file system. Upon failure, an application may
restart from a prior state by reading the checkpoint. An estimate for the optimal length of
the time-interval between checkpoints can be computed using the formulas derived by Young
[68] or Daly [15] under various assumptions. Youngs 1st order approximation is particularly
simple

TFO =
√

2µC (96)

Where µ is the mean time between failure and C the time to create a checkpoint. The
checkpoint-to-filesystem approach works well when using a comparatively small number of
nodes, but does not scale well. The mean time between failure µ scales linearly with the
number of nodes used, so does the associated lost computational work done between the
point of failure and the most recent check-point. The problem is further exacerbated by the
fact that the compute capabilities at large-scale facilities have increased much quicker than
I/O bandwidth over the last decade, a trend that is expected to continue.

A promising approach to mitigate the scaling issues is to use multiple levels of checkpoints
[29, 64]. It has been observed that most hard errors only effect a single node, and when
more nodes fail at the same time they typically do so in a predictable manor, i.e. a power
supply unit serving multiple nodes fail or something similar. Ideally, a local failure should
permit local recovery. Multi-level check-pointing address the problem using different types
of checkpoints, each of which have their own level of resilience and associated cost. Slower
and more resilient levels could be made by writing to parallel file-system, thus allowing

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 82

recovery from many nodes failures. Cheaper and less resilient checkpoint levels may be
constructed utilizing node-local storage such as RAM or Disk along with some form of cross-
node redundancy or erasure code. If the cheaper checkpoints are able to recover from are
comparatively large number of failures, the expensive parallel-file-system checkpoints will
not have to be made as often. This leads to higher overall system efficiency as less time is
spent creating checkpoint, and recomputing lost work.

6.1.1 SCR: Scalable Checkpoint/Restart for MPI

A number of libraries for fault-tolerance in HPC are in development, notable the Fault
Tolerance Interface [3], Global View Resilience [12] and Scalable Checkpoint/Restart [47].
Among these options we have decided that SCR is the most promising option. It is well tested
and has been used in early versions in production code at LLNL since 2008, additionally there
is a fairly comprehensive manual on how to use SCR. They’ve documented that their large-
scale jobs run more efficiently, recover more work upon failure and that the load on shared
resources such as the parallel file system and network infrastructure are reduced when using
SCR. Finally, the SCR Library is actively being developed on with planned improvements to
prepare for exascale scale computing. Well in line with the goals of ExaFLOW. For a code
to be able to utilize the SCR library, the code must satisfy a list of 11 criteria. The most
limiting of these being

• The code must take globally-coordinated checkpoints written primarily as a file per
process.

• On some systems, checkpoints are cached in RAM disk. This restricts usage of SCR
on those machines to applications whose memory footprint leaves sufficient room to
store checkpoint file data in memory simultaneously with the running application.

As for the first requirement that a globally-coordinated checkpoint must be written as
a file per MPI rank, this may be limiting in context Nektar++. The code is MPI only,
so having separate files for each process per checkpoint will create a very large number of
files which may conflict with file system quotas. To mitigate this issue, Nektar++ supports
creating checkpoints using HDF5, but this does not satisfy the first criteria for using SCR.
The second requirement that could potentially cause issues is that of system memory. SCR
uses a two-level checkpoint scheme. The more resilient level is a complete check-point to the
parallel file system whereas the cheap, less resilient, checkpoint level is constructed using
smaller groups of processors that save a check-point in local memory whilst applying some
redundancy scheme across the processors in the group. The authors of SCR find that on
their systems, 85 percent of all node failures, may require from the cheaper local checkpoint
when an XOR redundancy scheme is applied[46]. The amount of additional RAM disk
needed depends on what redundancy scheme is used, but the total memory footprint of the
application will increase by atleast a factor of two. The added memory footprint of the
application is less of a concern than the requirement that one must write checkpoints as a
file per process since in the strong scaling limit applications tend not to be memory bound.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 83

6.1.2 ULFM-MPI: User Level Failure Mitigation

An alternative to using the SCR library is to implement a multi level checksum checkpoint
scheme directly into Nektar++ using ULFM-MPI[4]. User Level Failure Mitigation (ULFM)
is a proposed extension to MPI developed by the MPI Forums Fault Tolerance Working
Group. It is not a fault-tolerance library, rather it is an API that allows developers to im-
plement fault-tolerant algorithms in MPI. ULFM was designed to manage failures following
three fundamental concepts: 1) simplicity, the API should be easy to understand and use
in most common scenarios; 2) flexibility, the API should allow varied fault tolerant models
to be built as external libraries and; 3) absence of deadlock, no MPI call (point-to-point
or collective) can block indefinitely after a failure, but must either succeed or raise an MPI
error. A prototype of ULFM is available to be used with the OpenMPI compiler. As an
alternative to using the multi-level checkpoint system that is the core of the SCR library, we
may implement our own multi-layered recovery system specifically tailored to an application
using ULFM-MPI. This has the advantage of control. We may experiment with different
numbers of layers and various checksum checkpoint approaches as we see fit. The cost of
the approach being that the implementation aspect is much more challenging than using the
SCR library.

6.1.3 Multi-level check-sum check-pointing in Nektar++

As a first step towards adding resilience to hard errors, a prototype solver has been developed
in Nektar++ which leverages the ULFM functionality developed within OpenMPI. This is
combined with traditional disk-based check-pointing at relatively infrequent intervals.

Fluid dynamics simulations can be characterised by three phases: mesh partitioning,
initialisation of the linear systems in memory, and time integration. The mesh partitioning
phase takes non-negligible amount of time to complete on the very large meshes which
would be expected to justify the use of exascale computing resources. However, the resulting
partitions are written to the filesystem and are therefore inherently resilient. In comparison,
the initialisation of the linear systems in memory is primarily a local operation with limited
inter-node communication. By far the most considerable cost of the simulation is the time-
integration phase, which typically takes > 99.9% of the walltime.

The complete ULFM recovery checkpoint is partitioned into two components: a static
component and a dynamic component. The static component comprises all information
necessary to reconstruct the linear systems in memory, which do not evolve during the time-
integration phase. The dynamic component comprises the solution state variables which do
evolve during time integration. The static checkpointing is performed once at the end of
the initialisation phase, while the dynamic checkpointing is performed at regular intervals
during the time-integration phase.

A transaction log approach is used for static checkpointing. In this approach, the output
of all MPI transactions on a given process is logged throughout the initialisation phase. At
the end of this phase, the log is transmitted once to the partner node, which retains the data
in memory. This strategy has a number of advantages:

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 84

• Given the number of communication calls is relatively small (and of small size), the
static checkpoint occupies much less memory than a copy of the completed linear
system, as well as less interconnect bandwidth when transmitted to the partner node.

• A local process can recover in complete isolation from other processes by constructing
the local portion of the linear systems as normal and replying the transaction log. The
assumption is made that the recovering process will follow the exact same program
pathway as the original process.

• Since almost all the modifications to the code are to intercept the MPI calls, this proce-
dure can be cleanly applied with limited modifications outside of the communications
layer.

A potential disadvantage is that the local recovering process must perform all the compu-
tation to reconstruct the linear systems while surviving processes wait idle. For large local
systems this may be wasteful of resources but it is anticipated that at exascale computation
will be highly parallel and local problem sizes will be small with linear systems that can be
rapidly recomputed.

The first prototype implementation which provides inter-node in-memory check-pointing,
thereby providing resilience against node failure, has been developed in Nektar++ for a
diffusion problem. This has been tested to correctly recover the computation when a node
fails at any point during the time-integration phase.

6.2 Improving upon State-of-the-art

Some form of redundancy scheme is needed when using disk-less checkpoint groups as detailed
in the previous sections to create fast, lightly resilient, checkpoint levels. One approach
is neighbor based check-pointing. In neighbor-based check-pointing, neighbor groups are
assigned among the many checkpoint groups so that each group has at least one neighbor.
In addition to keeping a local checkpoint in memory, at least one other checkpoint from a
neighbor is stored. In this way the recovery process will always be localized to only involve the
neighbor to a failed processor and the replacement processor, and no global communication
and encoding/decoding calculations are needed. Various neighbor-hood based checkpoint
schemes have been proposed such as mirroring [51] and ring neighbor [59].

An alternative approach is to apply some form of erasure code across a group of pro-
cessors. Erasure codes take data consisting of k symbols and turn it into a larger data set
with n symbols such that the original data may be recovered from a subset of the n sym-
bols. Erasure codes for which any k symbols are sufficient to recover the original data are
called optimal, these codes are as resilient as possible, but typically scale quadratic in terms
of coding and decoding complexity with respect to n. The advantage compared to using
a neighbor-based checkpoint scheme is that one can achieve a more resilient checkpoint at
a much lower memory footprint. The disadvantage being the introduction of a potentially
complicated encoder-decoder scheme as well as non-local communications during both the

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 85

check-pointing and recovery procedure. Many types of erasure codes exists, the simplest be-
ing the XOR scheme as used in SCR [50, 46]. If bit-wise exact recovery to multiple failures
within a group is required, then some variant of the Reed-Solomon error correction code can
be used [49].

In scientific applications, what needs to be check-pointed is often some form of numerical
data. The data may be treated as bit-streams using the algorithms mentioned to create a
checksum, but a checksum may also be generated from the floating point numbers directly.
In [38] the authors list a number of advantages in doing so. A main point being that
one avoids the trouble of introducing Galois Field arithmetic in the encoding and decoding
procedure, instead using standard matrix operations on floating point numbers directly. The
disadvantage of doing so is the introduction of round-off errors during the recovery process
due to limited precision of representation of floating point numbers. As shown in [10, 38], the
loss of accuracy may however be quite limited even for large data sets with many checksums
with a proper choice of checksum encoding matrix. No matter what kind of erasure code is
used for redundancy across groups of processors, if more processors are lost than checksums
available in local memory within the group, it is not possible to recover the original data using
the associated decoder. This is unfortunate as this means one must revert to a more resilient
checkpoint such as one written to the parallel-file-system. Recovery from the parallel-file-
system is not only slower to restart, but one also loses all computational progress since the
last parallel file-system checkpoint was made.

When the number of lost processors is larger than n−k, infinitely many solutions satisfy
the linear encoding scheme, and it is in general not possible to find the original data lost.
However, often we do have some knowledge of the data encoded and its structure. In
computational science, the data to be protected might very well be floating point numbers
representing some smooth 2D or 3D surface. Can we somehow formulate the prior knowledge
of the data, as a form of constraint to enforce uniqueness? The idea being to find the solution
among infinite many possible solutions that best satisfy our regularity assumptions whilst
also satisfying the checksum. Such a scheme does not need to be perfect in recovering the
data. If the lost data can be recovered with an accuracy smaller than that that of numerical
scheme used to solve the system of PDEs, it may be sufficient to avoid reverting to a higher
level of resilience. Our preliminary findings is that the answer is yes. It is possible to recover
information from under-determined systems when having knowledge of the underlying data
structure and what it is to represent. In the next three short sections, an introduction to
some algorithms for doing is presented for encoding floating point numbers using a Gaussian
random matrix. These algorithms are comparatively simple to derive and illustrate in 1D as
only standard matrix operations are involved unlike the case for incomplete data recovery
in erasure codes on Galois fields.

6.2.1 Incomplete information recovery in under-determined check-sums

Define a vector x̄ of length m times n. Now, assume that this vector is partially stored
in n equal parts on n independent compute nodes. Then the “sub-vector” of each node
contains a total of m elements. We can access the i’th out of m elements stored on the

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 86

jth node as xjm+i, where i ∈ {0,m− 1} and j ∈ {0, n− 1}. Say that we are at risk of
losing the information stored on some of these nodes. One way of guarding against this is
to compute an element wise checksum. That is, imagine that we have an additional spare
node, somewhere that we can store another vector denoted c̄ of length m. And say that for
this vector c̄, we compute each element as

ci =
n−1∑
j=0

xjm+i, ∀ i ∈ {0,m− 1} (97)

Then, if at some point we lose some node k. No matter which node it is, we may use the
vector c̄ to recover the data on this node by doing m summations of the form

xnlm+i = cm −
n−1∑

j=0,j 6=k

xjm+i (98)

In other words, if we lose just one node, we may recover the data exactly - no matter what
node was lost. We denote the vector c̄ the checksum. But what if we lose more than one
node? Well, it turns out that the above idea is extendable to what is called a weighted
checksum that we will elaborated below. For ease of notation, let x̄j denote the j’th sub-
vector. Suppose that we can afford to store nc checksum vectors c̄, and that we compute
each sub-vector on the form

a11x̄
1 + . . .+ a1nx̄

n = c̄0

...

anc1x̄
1 + . . .+ ancnx̄

n = c̄nc−1

(99)

where aij, i = 1, 2, . . . nc, j = 1, 2, . . . n are some weights to be chosen. The matrix A =
(aij)ncn is called the checkpoint matrix for the weighted checksum scheme. It turns out, that
by choosing the weights in a clever way, one can recover lost information on up and including
nc lost nodes. How is the recovery done in practice? Assume, without loss of generality, that
the computational processors j1, j2, . . . , jk has failed and the jk+1, jk+2, . . . , jn computational
processors has survived, then the subvectors x̄j1 , x̄j2 . . . , x̄jk are the unknowns that we would
like to recover. By restructuring Eq. (99), we find that we have a system on the form Eq.
(100) to solve

a11x̄
1 + . . .+ a1jk x̄

jk = c̄0 −
∑n

t=k+1 a0jtx̄
jt

...

anc1x̄
1 + . . .+ ancjk x̄

jk = c̄nc−1 −
∑n

t=k+1 ancjtx̄
jt

(100)

Let Ar denote the coefficient matrix of the above linear system. If the number of checksums
is equal to the number of lost nodes,nc = k, then the above system has a single unique
solution. If nc > k, a unique solution exists as long as the elements in the checkpoint matrix
A is chosen so that any sub-matrix of A is non-singular as this guarantees that Ar will have
full rank. If the number of nodes lost k is larger than nc , there is no unique solution to

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 87

the problem of recovering the lost sub-vectors x̄n . Of course, one could simply let nc be
very large to avoid such a situation, but increasing the number of checksum vectors increases
the amount of resources that needs to be used both in terms of storage, computation and
commutation. Ideally we’d like to keep the overhead resources low. So let’s go back to the
case of having only a single checksum vector. If we lose say nl > 1 nodes, the solution space
of every element i ∈ [0,m− 1] in each lost sub-vector x̄j is spanned by an nl dimensional
affine hyperplane.

The solution space is infinitely large, and we can not recover the lost sub-vectors of the
lost nodes directly. Let us now introduce the idea that the data vector stored in a distributed
manor on many nodes has some structure to it that we have some a priori knowledge of.
Say, we might know that the data points are sampled from a C∞ functional. Now, given
this knowledge, what if, among the infinite number of solutions to (100), for each m when
r > 1, we choose a solution that, in some yet to be defined sense, makes the function that we
imagine x̄j to approximate as smooth as possible? In section 6.2.2, one possible approach of
doing so is presented. We show that the ill-posed problem of recovering information when
r > t can be transformed into a well-posed convex optimization problem. Similarly, imagine
that we have access to a reduced model, or any other form of inexact compression of the
original data, we may then formulate our problem as to search for whatever data that is as
close as possible to our reduced model, but satisfy checksums (99). This approach is outlined
in section 6.2.2. All examples are given in 1D but may be extended to higher dimensions.

6.2.2 Uniqueness by minimizing the 1st order derivative

In order to define an objective function to be minimized that somehow expresses the “smooth-
ness” of function represented by the data in the vector x̄, we define a new variable ȳ ∈ Rnlm

where each element in the vector is an approximation of the 1st order derivative at the cor-
responding element in x̄. For simplicity we use a simple centered finite difference scheme

yinl+k =
s∑

is=0

(−i)is
(

s
is

)
xLkm+i+ s

2
−is , k = 0 . . . nl − 1, i = 0 . . .m− 1 (101)

Where L ∈ Nnl is the set of lost nodes, each lost node indicated with an integer. Note here
that given ȳ, we may directly recover x̄j for all the lost nodes assuming the boundaries are
provided. One idea for an objective function to minimized could be the total variance, i.e.

V nl =

mnl∑
i=0

|yi| (102)

Alternatively we could also seek to minimize the inner product of ȳ with itself.

ȳT ȳ (103)

We wish to minimize our objective function under the constraint that the checksum (99)
is satisfied for all m after the sub-vectors x̄j has been reconstructed. We must somehow

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 88

transform the constraints (99) to be expressed in terms of our new variable ȳ to be minimized.
The procedure of doing so is fairly technical, so we just give the result

ȳ

∑nl−1
k=0 yk = β0 +

∑s
i=0 (−1)

i (s
i

)
c0+ s

2−i −
∑n−1

j=0,j /∈Lk

∑s
i=0 (−1)

i (s
i

)
xjm+ s

2−i∑nl−1
k=0 ynl+k = β1 +

∑s
i=0 (−1)

i (s
i

)
c1+ s

2−i −
∑n−1

j=0,j /∈Lk

∑s
i=0 (−1)

i (s
i

)
xjm+1+ s

2−i
...∑nl−1

k=0 y(m−2)nl+k = βm−2 +
∑s

i=0 (−1)
i (s

i

)
cm−2+ s

2−i −
∑n−1

j=0,j /∈Lk

∑s
i=0 (−1)

i (s
i

)
x(j+1)m−2+ s

2−i∑nl−1
k=0 y(m−1)nl+k = βm−1 +

∑s
i=0 (−1)

i (s
i

)
cm−1+ s

2−i −
∑n−1

j=0,j /∈Lk

∑s
i=0 (−1)

i (s
i

)
x(j+1)m−1+ s

2−i
(104)

where β0 . . . βm−1 denotes the terms that take into account the left and right boundary on the
data x̄. For example, if in (101) we had chosen a 4th order centered stencil to approximate
the derivatives that we are aiming to minimize, that we would have the stencil

yinl+k = xLkm−2+i−4xLkm−1+i+6xLkm+i−4xLkm+1+i+xLkm+2+i , k = 0 . . . nl−1, i = 0 . . .m−1 (105)

If the data x̄ is assumed symmetric around the boundaries, then one may show that the
terms β0 . . . βm−1 become

β̄

β0 = x−2 + 4xnm−1 − 4x−1 − xnm−2
β1 = x−1 − xnm−1
β2 = 0

...

βm−3 = 0

βm−2 = xnm − x0
βm−1 = xnm+1 + 4x0 − 4xnm − x1

(106)

The optimization problem of minimize (103) subject to the equality constraint (104) falls
into a well studied branch of mathematical optimization called quadratic programming. Our
problem is particularly nice since if we wrote (103) in the following form

ȳTQȳ (107)

Then Q is just the identity matrix, i.e., it is positive definite. That the objective function
is positive definite makes the optimization procedure much simpler. Let’s write our equality
constraint on matrix form as

Eȳ = d̄ (108)

with E ∈ Rnlm × Rm and d̄ ∈ Rm being defined directly from (103). For a positive definite
quadratic optimization problem with only equality constraints, the solution process is linear.
By using Lagrange multipliers, and seeking the extrema of the Lagrangian, it may be shown
that the solution to our optimization problem is given by the solution to a linear system of
the form [

I ET

E 0

] [
ȳ
v

]
=

[
0
d̄

]
(109)

where λ is a set of Lagrange multipliers which come out of the solution alongside ȳ. From
101, it is evident that ȳ with boundaries uniquely defines x̄j∀j ∈ L. In figure 42 a small

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 89

0 1

x

0

1

2

3

4

f(
x
)

n = 12, m = 42, nm = 504, nl = 5

Figure 42: A single checksum is created for red-line data stores on n = 12 nodes. The
data for bl = 5 nodes is removed. Exact recovery from the checkpoint is not possible, but
incomplete information recovery by solving the system (109) is and yields the output as
indicated by the black lines.

example of the recovery is presented for a single checksum across n = 12 nodes, finding an
approximation for the lost data when losing nl = 5 nodes. The method as derived above may
be extended two higher dimensions, and multiple checksums. How computationally efficient
is the recovery procedure? The linear system (109) is of dimensionality (nl + 1)m, that is,
potentially very large. However, (104) is a system of m, nl dimensional affine hyperplanes.
Each hyperplane independent from the other. Since our objective function (107) is also
positive semi definite, one can show that we may reduce our optimization problem from
one nlm dimensional problem, to m small nl dimensional problems, for each of which an
analytical solution exists.

6.2.3 Uniqueness by minimizing distance with respect to inexact data

Imagine that we have some inexact approximation to the data that we wish to recover from
the under-determined checksum equation 99 in the event that we have lost more nodes than
we have checksums. In essence, we need a way to find whatever data x that minimize the
distance to the inexact data x̄, under the constraint that all checksums must be satisfied.
That is, we wish to minimize the elements in ȳ

ymNl+nl = xLk(M+1)+m − x̄Lk(M+1)+m , nl = 0 . . . Nl − 1, m = 0 . . .M (110)

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 90

As before we must transform the constraints (99) to be expressed in terms of our new variable
ȳ to be minimized. Again, the procedure is a bit tedious, so we just skip to the result

ȳ

∑Nl−1

nl=0 a
k
Lnl
ynl = ck0 −

∑Nl−1
nl=0 a

k
Lnl
x̄LnlM −

∑N−1
n=0,n/∈L a

k
nxnM

...∑Nl−1
nl=0 a

k
Lnl
y(M−1)Nl+nl = ckM−1 −

∑Nl−1
nl=0 a

k
Lnl
x̄(Lnl+1)M−1 −

∑N−1
n=0,n/∈L a

k
nx(n+1)M−1

(111)
The above must be satisfied for all k = 0 . . . K − 1. If we minimize the inner product of
ȳ with itself as before eq (107), then we are again faced with a positive definite quadratic
optimization problem with equality constraints that have well studied solution methods.
Once ȳ has been found, an approximation to the lost data may be found by solving (110).
As before we provide a small example, see figure 44. The advantage of this approach is that
there is no need to save data at the data interfaces between nodes, an obvious disadvantage
is the need for some reduced model or compressed data.

An interesting aspect of the approach of ensuring uniqueness by minimizing the distance
between the data to be recovered and some inexact data is that the algorithm may be used to
feed itself in an iterative manor. An iteration could consists of first solving the minimization
problem (109) with the constraint (111), followed by the application of some regularization
function that modifies the data towards some property, smoothness for example. Figure 43
shows an example of doing so on a very large system with, nc = 500 checksums and nl = 1000
lost nodes. Only the recovered data is depicted. This approach works surprisingly well, but
is also very costly since the whole reconstruction procedure happens during each iteration.

6.3 Work-in-progress

The extension to 2D and higher of the algorithms derived in section 6.2 is conceptually
no different than what was presented already, albeit the derivation of the constraints is
substantially more involved. The data recovered when nl > nc is not of machine accuracy, so
for the approach to be of practical use in multi-level checksum checkpointing, we need some
way of quantifying the accuracy expected of the data recovered. Otherwise we will not know
whether the recovered data is sufficiently accurate to be used, so that one wouldn’t need to
revert to another checkpoint with a higher level resilience. We have experimentally observed
a relation between n, nl and nc and the average accuracy of the recovered solution. We have
however yet to find a theoretical foundation for this relation, and therefore can not claim a
complete understanding of how the accuracy of the recovered data depends on parameters.

Using Gaussian matrices to encode a checksum is somewhat of a niche in the context
of fault-tolerance as it really only applies to floating point numbers where the exact bit-
wise representation is not necessary upon recovery. Accuracy below some given bound is
considered sufficient. A much more widely used method is the class of Reed-Solomon codes
[53]. Reed-Solomon codes have found wide-spread use for error-correction in bistreams and
for resilience in storage centers such as RAID 6. The Reed-Solomon class of erasure codes
are, at their core, also linear checksum schemes. The difference being that their checksum

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 91

Figure 43: Incomplete information recovery using the iterative approach briefly outlined at
the end of section 6.2.3. Only the data lost, and to be recovered is depicted. The black line
indicates the original solution, and the blue line the recoveered solution after 10 iterations.
Here nc = 500 and nl = 1000.

matrices are vandermonde matrices with coefficients in a Galois field. We believe that our
approach of iteratively switching between enforcing some regularity condition, and solving a
minimization problem to satisfy a checksum is agnostic to the underlying checksum matrix,
and that the algorithm is extendable. If successful, the method would potentially have a
wide number of applications in fault tolerance and error correction also outside the context
of HPC.

Finally, as outlined in section 6.1 there are a number of limitations associated with
using the SCR library for multi-level diskless checksum checkpointing in Nektar++. We are
therefore moving in the direction of creating our own multi-level checksum checkpointing
scheme and implementing it in Nektar++ using UFLM MPI. There are many design trade-
offs that must be considered when creating a multi-level checkpointing scheme, but to a large
extent we may be guided in our choices trough the extensive body of work already published
on fault-tolerance using checksum-checkpointing.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 92

Figure 44: nc = 10 checksums have been created for the black line data stored on n = 100
nodes. The data for nl = 20 nodes is removed. Exact recovery from the checkpoint is
not possible, but incomplete information recovery by solving the optimization problem with
constraint 111 and approximate data as indicated by the red line. The output from the
solution procedure is marked in green. (a) full view. (b-c) zoomed in.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 93

7 Summary

Significant progress has been made in the development of algorithms within all of the tasks
in this work package, which are now being implemented as part of WP2 as detailed in D2.2,
and examined in the use cases of WP3 as shown in D3.2. Several areas of overlap and
collaboration between the different work package partners, as well as feedback from other
work packages, are under active development. This includes, for example:

• Coarse space AMG preconditioners developed as part of task 1.1 by KTH are now being
investigated by IC in task 1.3 in order to improve strong scalability of simulations, as
identified by simulations performed in WP3 by ASCS.

• Significant progress has been made in collaborations between IC and EPFL have re-
sulted in a prototype fault-tolerant solver for the diffusion equation. This prototype
will now be extended to the Navier-Stokes equations. This will prove useful both as
a platform for further algorithmic developments, as well as in examining node failures
for the WP3 cases.

• SOTON and KTH have been in communication regarding the error estimators outlined
in this deliverable, resulting in a number of developments on this front.

As outlined in each of the task summaries, there is a clear plan for the development of
each task across the final phase of the project. We plan to continue the development of the
algorithms along these lines by incorporating feedback and implementation from efforts in
WP2, as well as their performance in the WP3 test cases.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 94

References

[1] Tinku Acharya and Ping-Sing Tsai. JPEG2000 Standard for Image Compression: Con-
cepts, Algorithms and VLSI Architectures. John Wiley & Sons, Hoboken, New Jersey,
2005.

[2] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. Uni-
fied analysis of discontinuous galerkin methods for elliptic problems. SIAM journal on
numerical analysis, 39(5):1749–1779, 2002.

[3] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello, Naoya
Maruyama, and Satoshi Matsuoka. Fti: high performance fault tolerance interface for
hybrid systems. In Proceedings of 2011 international conference for high performance
computing, networking, storage and analysis, page 32. ACM, 2011.

[4] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George Bosilca,
and Jack J Dongarra. An evaluation of user-level failure mitigation support in mpi. In
European MPI Users’ Group Meeting, pages 193–203. Springer, 2012.

[5] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, and U. Frisch.
Small-scale structure of the Taylor-Green vortex. Journal of Fluid Mechanics, 130:411–
452, 5 1983.

[6] Tim Bruylants, Adrian Munteanu, and Peter Schelkens. Wavelet based volumetric
medical image compression. Signal Processing: Image Communication, 31:112 – 133,
2015.

[7] M. Budǐsić, R. Mohr, and I. Mezić. Applied Koopmanisma). Chaos, 22(4):047510,
December 2012.

[8] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive schwarz preconditioner for
general sparse linear systems. SIAM J. Sci. Comput., 21(2):792–797, September 1999.

[9] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1):5–28, 2014.

[10] Zizhong Chen and Jack J Dongarra. Condition numbers of gaussian random matrices.
SIAM Journal on Matrix Analysis and Applications, 27(3):603–620, 2005.

[11] Chen-Yong Cher, Meeta S Gupta, Pradip Bose, and K Paul Muller. Understanding soft
error resiliency of bluegene/q compute chip through hardware proton irradiation and
software fault injection. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 587–596. IEEE Press,
2014.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 95

[12] A Chien, Pavan Balaji, Nan Dun, Aiman Fang, Hajime Fujita, Kamil Iskra, Zachary
Rubenstein, Ziming Zheng, Jeff Hammond, Ignacio Laguna, et al. Exploring versioned
distributed arrays for resilience in scientific applications: global view resilience. Interna-
tional Journal of High Performance Computing Applications, page 1094342016664796,
2016.

[13] C. Christopoulos, A. Skodras, and T. Ebrahimi. The jpeg2000 still image coding system:
an overview. IEEE Transactions on Consumer Electronics, 46(4):1103–1127, Nov 2000.

[14] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified Hy-
bridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for
Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319–
1365, 2009.

[15] John T Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future generation computer systems, 22(3):303–312, 2006.

[16] David David Taubman and Michael Marcellin. JPEG2000: Image Compression Funda-
mentals, Standards and Practice. Springer US, New York City, 2002.

[17] J. DeBonis. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Ex-
plicit Finite Difference Methods. In 51st AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, 2013.

[18] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incompressible
Fluid Flow. Cambridge University Press, 2003.

[19] Jack Dongarra, Thomas Herault, and Yves Robert. Fault tolerance techniques for high-
performance computing. In Fault-Tolerance Techniques for High-Performance Comput-
ing, pages 3–85. Springer, 2015.

[20] Evridiki Efstathiou and Martin J. Gander. Why restricted additive schwarz converges
faster than additive schwarz. BIT Numerical Mathematics, 43(5):945–959, 2003.

[21] T. Eisner, B. Farkas, M. Haase, and R. Nagel. Operator Theoretic Aspects of Ergodic
Theory. Berlin, Springer, 2015.

[22] Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of
Algorithms). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2007.

[23] P. Fischer, N. Miller, and H. Tufo. An overlapping schwarz method for spectral element
simulation of three-dimensional incompressible flow. In P. Bjorstad and M. Luskin,
editors, Parallel Solution of Partial Differential Equations, volume 120 of The IMA
Volumes in Mathematics and its Applications, pages 159–180. Springer New York, 2000.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 96

[24] P. F. Fischer. An overlapping schwarz method for spectral element solution of the
incompressible navier stokes equations. Journal of Computational Physics, 133:84–101,
May 1997.

[25] Paul F. Fischer, Gerald W. Kruse, and Francis Loth. Spectral element methods for
transitional flows in complex geometries. J. Sci. Comput., 17(1-4):81–98, December
2002.

[26] Paul F. Fischer and James W. Lottes. Hybrid Schwarz-Multigrid Methods for the Spectral
Element Method: Extensions to Navier-Stokes, pages 35–49. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[27] M. N. Gamito and M. Salles Dias. Lossless coding of floating point data with JPEG
2000 Part 10. In A. G. Tescher, editor, Applications of Digital Image Processing XXVII,
volume 5558, pages 276–287, November 2004.

[28] Al Geist. Supercomputings monster in the closet. IEEE Spectrum, (3), 2016.

[29] Erol Gelenbe. A model of roll-back recovery with multiple checkpoints. In Proceed-
ings of the 2nd international conference on Software engineering, pages 251–255. IEEE
Computer Society Press, 1976.

[30] Johan Hoffman, Johan Jansson, Niclas Jansson, and Rodrigo Vilela De Abreu. Towards
a parameter-free method for high Reynolds number turbulent flow simulation based
on adaptive finite element approximation. Computer Methods in Applied Mechanics
and Engineering, 288:60–74, 2015. Error Estimation and Adaptivity for Nonlinear and
Time-Dependent Problems.

[31] Kuang-Hua Huang et al. Algorithm-based fault tolerance for matrix operations. IEEE
transactions on computers, 100(6):518–528, 1984.

[32] C. T. Jacobs, S. P. Jammy, and N. D. Sandham. OpenSBLI: A framework for the
automated derivation and parallel execution of finite difference solvers on a range of
computer architectures. Journal of Computational Science, 18:12–23, 2017.

[33] S. P. Jammy, C. T. Jacobs, and N. D. Sandham. Performance evaluation of explicit finite
difference algorithms with varying amounts of computational and memory intensity.
Journal of Computational Science, In Press.

[34] Robert M. Kirby, Spencer J. Sherwin, and Bernardo Cockburn. To CG or to HDG: A
comparative study. Journal of Scientific Computing, 51(1):183–212, 2011.

[35] B. O. Koopman. Hamiltonian Systems and Transformations in Hilbert Space. Proceed-
ings of the National Academy of Science, 17:315–318, May 1931.

[36] L. I. G. Kovasznay. Laminar flow behind a two-dimensional grid. Proc. Cambridge Phil.
Soc., 4:58–62, 1948.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 97

[37] Gerald W. Kruse. Parallel Nonconforming Spectral Element Solution of the Incompress-
ible Navier-Stokes Equations in Three Dimensions. PhD thesis, Providence, RI, USA,
1997. UMI Order No. GAX97-38573.

[38] Julien Langou, Zizhong Chen, Jack J Dongarra, and George Bosilca. Disaster survival
guide in petascale computing. In Petascale Computing: Algorithms and Applications,
pages 263–288. Chapman and Hall/CRC, 2007.

[39] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, March 2000.

[40] Shipeng Li and Weiping Li. Shape-adaptive discrete wavelet transforms for arbitrarily
shaped visual object coding. IEEE Transactions on Circuits and Systems for Video
Technology, 10(5):725–743, Aug 2000.

[41] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2674–2683, Dec 2014.

[42] Alexander Loddoch and Jrg Schmalzl. Variable quality compression of fluid dynamical
data sets using a 3-d dct technique. Geochemistry, Geophysics, Geosystems, 7(1):n/a–
n/a, 2006. Q01003.

[43] James W. Lottes and Paul F. Fischer. Hybrid multigrid/schwarz algorithms for the
spectral element method. Journal of Scientific Computing, 24(1):45–78, 2005.

[44] Y. Lu and M. N. Do. Crisp-contourlets: A critically-sampled directional multiresultion
image representation. In Proc. of SPIE Conference on Wavelet Applications in Signal
and Image Processing X, pages 655–665, San Diego, USA, Aug. 2003.

[45] Catherine Mavriplis. A posteriori error estimators for adaptive spectral element tech-
niques. In Peter Wesseling, editor, Notes on Numerical Fluid Mechanics, pages 333–342,
1990.

[46] Kathryn Mohror, Adam Moody, Greg Bronevetsky, and Bronis R de Supinski. De-
tailed modeling and evaluation of a scalable multilevel checkpointing system. IEEE
Transactions on Parallel and Distributed Systems, 25(9):2255–2263, 2014.

[47] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R de Supinski. Design,
modeling, and evaluation of a scalable multi-level checkpointing system. In Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11. IEEE Computer Society, 2010.

[48] D. Moxey, C. D. Cantwell, G. Mengaldo, D. Serson, D. Ekelschot, J. Peiró, S. J. Sher-
win, and R. M. Kirby. Towards p-adaptive spectral/hp element methods for modelling
industrial flows. to appear in proceedings of ICOSAHOM 2016, January 2017.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 98

[49] James S Plank et al. A tutorial on reed-solomon coding for fault-tolerance in raid-like
systems. Softw., Pract. Exper., 27(9):995–1012, 1997.

[50] James S Plank and Kai Li. Faster checkpointing with n+ 1 parity. In Fault-Tolerant
Computing, 1994. FTCS-24. Digest of Papers., Twenty-Fourth International Sympo-
sium on, pages 288–297. IEEE, 1994.

[51] James S Plank, Kai Li, and Michael A Puening. Diskless checkpointing. IEEE Trans-
actions on Parallel and Distributed Systems, 9(10):972–986, 1998.

[52] Majid Rabbani and Rajan Joshi. An overview of the {JPEG} 2000 still image compres-
sion standard. Signal Processing: Image Communication, 17(1):3 – 48, 2002. {JPEG}
2000.

[53] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[54] Piyush Sao and Richard Vuduc. Self-stabilizing iterative solvers. In Proceedings of the
Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, page 4.
ACM, 2013.

[55] J. Schmalzl. Using standard image compression algorithms to store data from compu-
tational fluid dynamics. Computers and Geosciences, 29:1021–1031, October 2003.

[56] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Jour-
nal of Fluid Mechanics, 656:5–28, July 2010.

[57] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Characterizing
the impact of soft errors on iterative methods in scientific computing. In Proceedings of
the international conference on Supercomputing, pages 152–161. ACM, 2011.

[58] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. Fault tolerant
preconditioned conjugate gradient for sparse linear system solution. In Proceedings of
the 26th ACM international conference on Supercomputing, pages 69–78. ACM, 2012.

[59] Lúıs Moura Silva and Joao Gabriel Silva. An experimental study about diskless check-
pointing. In Euromicro Conference, 1998. Proceedings. 24th, volume 1, pages 395–402.
IEEE, 1998.

[60] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi,
Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, et al. Address-
ing failures in exascale computing. The International Journal of High Performance
Computing Applications, 28(2):129–173, 2014.

[61] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B Ferreira, Jon Stearley,
John Shalf, and Sudhanva Gurumurthi. Memory errors in modern systems: The good,
the bad, and the ugly. In ACM SIGPLAN Notices, volume 50, pages 297–310. ACM,
2015.

D1.2: Initial proof-of-concept formulation of ExaFLOW algorithms 99

[62] Vilas Sridharan, Jon Stearley, Nathan DeBardeleben, Sean Blanchard, and Sudhanva
Gurumurthi. Feng shui of supercomputer memory positional effects in dram and sram
faults. In High Performance Computing, Networking, Storage and Analysis (SC), 2013
International Conference for, pages 1–11. IEEE, 2013.

[63] Vivienne Sze, Madhukar Budagavi, and Gary J. Sullivan. High Efficiency Video Coding
(HEVC). Springer International Publishing, Switzerland, 2014.

[64] Nitin H Vaidya. A case for two-level distributed recovery schemes. In ACM SIGMET-
RICS Performance Evaluation Review, volume 23, pages 64–73. ACM, 1995.

[65] Christoph Wenzel, Björn Selent, Markus Kloker, and Ulrich Rist. Direct numerical
simulation of compressible turbulent boundary layers at various subsonic and supersonic
mach numbers. Under consideration for publication in J. Fluid Mech.

[66] Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A data–driven
approximation of the koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25(6):1307–1346, 2015.

[67] Sergey Yakovlev, David Moxey, Robert M. Kirby, and Spencer J. Sherwin. To CG or
to HDG: A comparative study in 3D. Journal of Scientific Computing, 67(1):192–220,
2016.

[68] John W Young. A first order approximation to the optimum checkpoint interval. Com-
munications of the ACM, 17(9):530–531, 1974.

	List of Figures
	Abbreviations
	Introduction
	Mesh quality and grid adaptivity
	Efficient pressure preconditioner for nonconforming meshes
	Navier-Stokes discretisation
	Additive Schwarz method
	Adaptation for nonconforming meshes

	A posteriori spectral error indicators
	Step 1: Compute the spectral coefficients
	Step 2: Compute the truncation error
	Step 3: Compute the quadrature error
	Step 4: Add both error terms
	Validation

	Adjoint error estimators
	Step 1: Solve the Navier-Stokes equations
	Step 2: Express the functional of interest
	Step 3: Solve the linearized adjoint Navier-Stokes equations
	Step 4: Adjoint error estimators

	Summary of progress and outlook

	Error control for heterogeneous modelling
	Error indicators
	Step 1: Hamming window
	Step 2: Fourier amplitude reconstruction
	Step 3: Error severity values

	Validation
	Outlook and future work

	Mixed CG-HDG formulation
	Formulation
	Local formulation of the HDG method
	Global formulation
	Matrix form

	Combined Continuous-Discontinuous Formulation
	Continuous-Discontinuous Solver
	Convergence rates comparison: weak vs. strong boundary conditions

	Weak Dirichlet boundary conditions: benefits and applications
	Comparison against alternative methods
	Applications in the context of ExaFLOW WP3 test cases

	Expected performance of the CG-DG scheme
	Domain Description
	Stage I: Solution of Statically Condensed System
	Cost of Solving the Statically Condensed System
	Stage II: Interior Solve

	Summary and outlook

	Data reduction
	Introduction
	JPEG-2000
	Wavelet Transform
	Quantization
	Extensions
	Fixed Point Number Format
	Shape-Adaptive Discrete Wavelet Transform

	SVD
	Description of the method
	Outlook

	Dynamic Mode Decomposition
	Analysis
	Simplified approach
	Ensembles
	Koopman eigenfunctions
	How to realize the Koopman related Dynamic Modes approach?
	Implementation and Experiences

	Conclusions and Future Work

	Fault tolerance and resilience
	 Check-pointing for Resilience
	 SCR: Scalable Checkpoint/Restart for MPI
	 ULFM-MPI: User Level Failure Mitigation
	 Multi-level check-sum check-pointing in Nektar++

	Improving upon State-of-the-art
	Incomplete information recovery in under-determined check-sums
	Uniqueness by minimizing the 1st order derivative
	Uniqueness by minimizing distance with respect to inexact data

	Work-in-progress

	Summary

