
H2020 FETHPC-1-2014

Enabling Exascale Fluid Dynamics Simulations
Project Number 671571

D1.3 - Final report on ExaFLOW algorithmic

developments

WP1: Algorithmic improvements towards exascale

Copyright c© 2018 The ExaFLOW Consortium

The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

D1.3: Final report on ExaFLOW algorithmic developments 2

DOCUMENT INFORMATION

Deliverable Number D1.3
Deliverable Name Final report on ExaFLOW algorithmic developments
Due Date TBC (PM 36)
Deliverable lead KTH
Authors David Moxey (Imperial)

Chris Cantwell (Imperial)
Martin Vymazal (Imperial)
Nicolas Offermans (KTH)
Adam Peplinski (KTH)
Niclas Jansson (KTH)
Philipp Schlatter (KTH)
Satya Jammy (SOTON)
Christian T. Jacobs (SOTON)
Neil Sandham (SOTON)
Björn Dick (USTUTT)
Jing Zhang (USTUTT)
Uwe Küster (USTUTT)
Patrick Vogler (USTUTT)
Ulrich Rist (USTUTT)
Nielsen Allan Svejstrup (EPFL)
Jan Hesthaven (EPFL)

Responsible Author David Moxey (Imperial)
e-mail: d.moxey@imperial.ac.uk

Keywords exascale algorithms, scalability, modelling, input/output
WP WP1
Nature R
Dissemination Level PU
Final Version Date TBC
Reviewed by Niclas Jansson (KTH), Rahul Bale (RIKEN)
MGT Board Approval 30/09/2018

d.moxey@imperial.ac.uk

D1.3: Final report on ExaFLOW algorithmic developments 3

DOCUMENT HISTORY

Partner Date Comment Version
Imperial 30/07/2018 Initial skeleton document 0.1
Imperial 28/08/2018 Incorporate changes from KTH 0.2
Imperial 30/08/2018 Incorporate changes from SOTON 0.3
Imperial 31/08/2018 Incorporate changes from USTUTT 0.4
Imperial 03/09/2018 Incorporate fault tolerance work from IC and EPFL 0.5
Imperial 18/09/2018 Incorporate changes from IC and final draft 0.6
Imperial 23/09/2018 Address reviewer comments 0.7
KTH 28/09/2018 Address reviewer comments 0.8
KTH 30/09/2018 Final Version 1.0

D1.3: Final report on ExaFLOW algorithmic developments 4

Executive Summary

In this deliverable, we will outline the final algorthmic developments made by the work
package 1 (WP1) ExaFLOW partners, summarising the work performed across the 36 months
of ExaFLOW and focusing on the final 18 months in particular, since the previous deliverable
(D1.2). Many of the developments here have led to journal or conference publications, and
these are cited where appropriate. Finally, we conclude with overall progress and a brief
discussion of future directions of research.

• Error control and mesh refinement: A central theme of WP1 activity has been
the development of new algorithmic techniques for adaptive simulations at extreme
scales, which we discuss in section 2. Adaptive simulations have the advantage that a
priori knowledge of the flow physics is not required and resolution can be automatically
tuned depending on local flow features, which is important in the context of extremely
large simulations that will occur at exascale. However, this requires the development of
robust, reliable error indicators and estimators to determine the regions of the domain
that require additional resolution, as well as efficient techniques to perform adaption
at extreme scales.

In terms of error estimation, we have followed two approaches within the project. The
first, which we discuss in section 2.1, attempts to detect regions of error by observing
the decay of a spectrum coefficients, comparing this against the expected decay rates
that correspond to the underlying numerical method. This spectral error indicator
has been examined for both finite difference methods, within the OpenSBLI code, and
additionally for the spectral element method within Nek5000. The main advantage of
this approach is that it is local in nature and so negligible communication is required,
making it both highly scalable and cheap to compute. The efficacy of this indicator
has been examined in various examples which we document here for OpenSBLI and
previously in D1.2 for Nek5000. However, one drawback of the spectral error indicator
is that it has no particular knowledge of a fluid dynamics setting, and therefore may lead
to increases in resolution that are not necessarily required in the context of improving,
for example, the calculation of a drag coefficient. The second error estimator, outlined
in section 2.2, aims to address this issue through the use of a goal-based adjoint error
estimator. This yields a more accurate estimation of the error using a global approach
throughout the domain, but does come at a higher computational cost.

For the purposes of adaption, we have developed algorithms that combine h-type adap-
tive mesh refinement (i.e. a reduction in element size h) with a nonconformal high-
order spectral element method. This approach has been shown to be highly effective
in effectively utilising computational hardware (through the use of higher-order finite
elements) alongside massive scalability and the ability to adapt to more complex ge-
ometries through the nonconformal implementation. In section 2.3, we focus on the
requirements for preconditioning, solver stabilisation under this approach and algorith-
mic developments required to overcome challenges in partitioning. Full implementation
details are outlined in D2.4.

D1.3: Final report on ExaFLOW algorithmic developments 5

Finally, we have considered an alternative approach to error control by leverageing a
heterogeneous approach to fluid simulations. In this regime, different fluid models are
used in different regions of the domain depending on the level of detail required, which
both reduces the computational effort required and increase scalability. Our efforts in
this area are summarised in section 2.4. Here, we examine the possibility of reducing
computational cost by combining a more expensive direct numerical simulation (DNS)
together with a cheaper turbulence closure (RANS) for a turbulent channel flow, where
reductions of 25% in terms of grid points yield accuracy to within 2% of a full DNS of
the equivalent case.

• Mixed CG-HDG discretisation: In this task we have developed a formulation
for a mixed finite element discretisation, which aims to improve strong scalability by
combining two complementary methods. The first classical continuous Galerkin (CG)
method, is locally compact and exhibits excellent computational performance on mod-
ern hardware but at the expense of potentially complex communication patterns. The
second, hybridizable discontinous Galerkin (HDG) method, relaxes the communica-
tion requirements by removing continuity constraints between elements, leading to
more efficient pairwise communication patterns. However this comes at a higher com-
putational cost as HDG utilises a larger number of degrees of freedom compared to
CG. In section 3, we outline a formulation that uses ‘macro-elements’ that are com-
posed of CG elements and connected using the HDG method, with the hope of arriving
at a method that is both computationally efficient and strong-scalable. When doing
the cost analysis of the CG-DG algorithm, however, the assembly and solution of the
global system for the inter-node variable incurs significantly larger asymptotic cost.
This means that, although the strong scaling of this method would indeed be greatly
improved, it would come at the cost of significant additional runtime when compared to
the CG or HDG methods. We discuss this aspect further in deliverable D2.4. However,
this method has led to the development of a novel weakly-imposed boundary condition
for the incompressible fluid dynamics simulations in a parameter-free manner, unlike
classical formulations such as the Nitsche method, which we discuss in this section and
demonstrate through a number of numerical examples.

• Data compression: Another key theme throughout the ExaFLOW project has been
to investigate I/O and techniques that can be used to deal with the extremely large
datasets that will be produced at exascale. In WP1, we have developed a number of
techniques for compression of datasets. In this approach, we aim to retain the key
features of the flow whilst significantly reducing the volume of data that is required for
storage, thereby alleiviating pressure on parallel filesystems and longer-term storage
requirements. In section 4, we outline two of the approaches that have been considered
and tested during the project. The first, discussed in section 4.1, uses the JPEG-2000
format with a wavelet-based compression algorithm to develop an algorithm that is
able to conserve most of the internal energy of the fluid domain and minimize the
introduction of compression artifacts to support both visual and statistical evaluation.

D1.3: Final report on ExaFLOW algorithmic developments 6

The second approach investigates a reduced-order modelling technique based around
the singular value decomposition (SVD) of the underlying flow data. Here, the aim is
to mathematically extract key features of the flow by determining a small set of so-
called singular values for the flow data, therefore obtaining substantial data reduction
savings. In this deliverable, we summarise the theory behind these two approaches,
and consider the implementation and a number of test cases within deliverable D2.4
as part of WP2.

• Fault tolerance: With the current mean time to failure of current computing hard-
ware, it is expected that errors that are either hard (e.g. hardware failure) or soft
(e.g. memory corrpution) will occur within a matter of only a few minutes at exascale.
In ExaFLOW, we have been developing algorithms to ensure resilience at exascale for
fluid dynamics simulations.

These developments have broadly followed two lines of enquiry. In the first approach,
knowing that fluid dynamics solvers are typically complex codes, we have developed
a minimially-intrusive approach to dealing with hard failures specifically tailored to
applications that deal with transient simulations. This approach leverages user-level
failure mitigation (ULFM) extensions to the MPI communiation framework, combined
with spare nodes, to handle node failure during a simulation. In particular, the simu-
lation is broken up into an initial short ‘static’ phase that handles e.g. initial matrix
setup, and a ‘dynamic’ phase that represents timestepping of the equations of state.
By combining fast, in-memory backups of these states, which enable frequent and low-
overhead checkpointing during the dynamic phase, we are able to construct an efficient
and highly resilient method for transient flow simulations. To demonstrate the efficacy
of this scheme, the incompressible Navier-Stokes solver of Nektar++ has been extended
to incorporporate this algorithm. A full description of this implementation, alongside
performance analysis at larger scales, is described further in D2.4.

In our second approach, we have considered more advanced techniques that are more
intrusive within fluid dynamics codes, but offer the ability to increase resilience in a
highly memory efficient manner. Our approach is based on a Reed-Solomon erasure
code, which is used for error correction in, for example, storage services. This approach
allows for recovery of data whilst balancing the amount of memory storage required
using a parity technique. A new library, named ‘Llama’ has been implemented around
ths for this method has been implemented as part of WP2 and is described in further
detail in D2.4. In this deliverable, section 5.2 describes how this technique can be
modified from an algorithmic perspective to allow for partial data recovery, even when
the parity information is only partially available, providing the ability to significantly
increase robustness of fluid dynamics codes.

D1.3: Final report on ExaFLOW algorithmic developments 7

Contents

List of Figures 8

Abbreviations 11

1 Introduction 12

2 Error control and mesh refinement 13
2.1 Spectral error indicators . 13

2.1.1 Spectral element discretisations . 13
2.1.2 Finite difference discretisations . 13

2.2 Adjoint error estimators . 17
2.2.1 Weak form of the steady Navier–Stokes equations 17
2.2.2 Expression of the functional . 17
2.2.3 Lagrange optimisation . 18
2.2.4 Adjoint equations . 18
2.2.5 Error on the functional . 18
2.2.6 Contributions to the error . 19

2.3 Adaptive mesh refinement . 21
2.3.1 Adaptation of the hybrid Schwarz-multigrid preconditioner to noncon-

forming meshes . 22
2.3.2 Solver stabilisation based on high-pass filter 23
2.3.3 Two-level partitioning . 25

2.4 Error control for heterogeneous modelling . 27
2.4.1 Methodology . 27
2.4.2 Results . 28

3 CG-HDG formulation 31
3.1 Motivation . 31

3.1.1 Weak boundary condititions as part of CG-HDG formulation 31
3.1.2 Weak boundary conditions in underresolved flows 32
3.1.3 Review of existing algorithms for boundary discretization 33

3.2 Overview of the formulation of HDG method 34
3.3 Continuous problem . 34
3.4 HDG interpolation spaces and discretization 34
3.5 Approximation spaces . 36
3.6 Global formulation for HDG problem . 36
3.7 Local solvers in the HDG method . 37
3.8 Global problem for trace variable . 37
3.9 Discrete form of HDG local solver . 38
3.10 Continuous finite elements with weak Dirichlet boundary conditions 39
3.11 Results . 41

D1.3: Final report on ExaFLOW algorithmic developments 8

3.12 Convergence of continuous Galerkin solver with weak boundary conditions . 41
3.13 Comparison with classical penalty techniques 43
3.14 Navier-Stokes results . 45

3.14.1 NACA6412 . 45
3.14.2 Unsteady flow past a turbine blade 49

3.15 Discretization of global transmission condition in the CG-HDG algorithm . . 52

4 Compression algorithms 52
4.1 JPEG 2000 . 54

4.1.1 Theory . 54
4.2 Singular Value Decomposition . 56

5 Fault tolerance 57
5.1 Minimally intrusive resiliance for transient solvers 58

5.1.1 State Protection . 59
5.1.2 State Recovery . 61

5.2 Partial Information Recovery with Incomplete Checksums 61
5.2.1 The Weighted Checksum Scheme . 64
5.2.2 Partial information recovery for incomplete checksums 66
5.2.3 Uniqueness by Minimizing Distance to Inexact Data 67
5.2.4 An Iterative, Self-Feeding, Recovery Scheme 68
5.2.5 Summary . 71

6 Summary and outlook 75

List of Figures

1 Computational domain arrangement. Image by [39]. 15
2 Contours of velocity magnitude in a two-dimensional slice (in the x–y plane at

z = 0) from a V2C aerofoil simulation. Circles filled with blue, green, yellow
and red indicate Ii error severity values of 0, 1, 2 and 3, respectively. The top
and bottom images are for the coarse and refined grids, respectively. Images
by [39]. 16

3 Vortical structures (λ2 criterion) of the velocity field around the wing (left
panel) and the part of the domain covered by refinement levels higher and
equal 2 (right panel) at simulation time 7.2 for Rec = 2 ∗ 105 case. 21

4 1 Linear masking function restricting action of the high-pass filter to the
nonconforming interfaces for 2D wing simulation. 24

5 Domain decomposition for one-level (left) and two-level (right) partitioning in
3D wing simulation at Re = 2 ∗ 105. In red is visualised a part of the domain
residing on the second node (cores 32-64). The wing position is marked in blue. 25

D1.3: Final report on ExaFLOW algorithmic developments 9

6 Time of pressure preconditioner execution (left) and time per time step (right)
for one- and two-level partitioning. Results of a 3D wing simulation at Re =
2 ∗ 105. 26

7 Mean velocity profiles using a cutoff β. The dashed lines indicate β1 which is
where β switches from 0 to 1. 29

8 Mean velocity profiles using β following a sinusoid of half-period 20δν . The
dashed lines indicate the bounds where β varies from 0 to 1. The location at
which the sinusoid starts is identified by β1. 29

9 Mean velocity profiles using β following a sinusoid of half-period 40δν . The
dashed lines indicate the bounds where β varies from 0 to 1. The location at
which the sinusoid starts is identified by β1. 30

10 Mean velocity profiles obtained with DNS and blended DNS/RANS on a fine
(identical to the DNS) and coarse (4 times fewer points in the wall normal
direction) grids. 30

11 Distribution of unknowns for continuous and discontinuous Galerkin methods. 31
12 Mesh decomposition in CG-HDG setting. Each partition is discretized by

a continuous Galerkin method. Coupling between partitions is weak and in-
formation is transmitted through a hybrid variable (red degrees of freedom). 32

13 Implicit LES of a wingtip vortex using a high-order hp/spectral element solver.
Reproduced from [52]. 33

14 Computational domain and its tesselation demonstrating notation used in the
text. 35

15 Index mappings relating edge and element ids. 35
16 Meshes for Helmholtz convergence test. 42
17 Convergence to the exact solution in L2 norm. 43
18 Anisotropic mesh of a unit square. 45
19 Viscous incompressible flow past NACA airfoil: velocity magnitude obtained

with strong Dirichlet boundary conditions imposed on the airfoil surface (top)
and with weak boundary conditions (bottom). 47

20 Viscous incompressible flow past NACA airfoil: drag and lift on P4 elements
(top) and P8 elements (bottom). 48

21 Turbine blade geometry: domain and leading edge detail 49
22 Averaged velocity field obtained with strong boundary conditions on blade

wall (left column) and weak boundary conditions (right column). 50
23 Instantaneous velocity field obtained with strong boundary conditions on

blade wall (left) and weak boundary conditions (right). 51
24 Kinetic energy vs. time. 51
25 Structure of wavelet-based compression algorithm for volumetric floating-

point arrays. Encircled letters indicate the floating-point to fixed-point trans-
form (Q), discrete wavelet transform (W) and entropy encoding stage (E). . 55

D1.3: Final report on ExaFLOW algorithmic developments 10

26 2-dimensional representation of geometric operations performed during Em-
bedded Block Coding with Optimized Truncation stage. Red squares signal
a precinct, blue squares a code-block. 56

27 The form of Singular Value Decomposition 57
28 Data reduction with Singular Value Decomposition 58
29 Diagrammatic representation of the protection algorithm. Initialisation of

solver, showing three processes – two active and one spare – with ranks i,
j, and N , respectively. Rank i communicates static recovery data to rank
j. After a number of steps, at time tC0 , a remote in-memory checkpoint
occurs. The spare rank, N remains idle throughout. Red MPI regions denote
collective communication, while green regions denote pairwise communication. 60

30 Diagrammatic representation of the recovery algorithm. Process A with rank
i fails and, after enrolment and rank translation during recovery, process S is
assigned rank i and receives recovery data from rank j. Static and dynamic
data is subsequently recovered to the last checkpoint at time tCk without re-
quiring any further communication with surviving ranks. The simulation then
continues. Red MPI regions denote collective communication, while green re-
gions denote pairwise communication. 62

31 Numerical experiment testing the method (69) for partial information recovery
in incomplete checksums. The data indicated by the black line was stored in
k = 100 separate containers. m = 15 checksum vectors were created to protect
the content of the containers. The klost = 20 first containers are removed, i.e.
33% more data vectors are lost than checksum code vectors created. 69

32 Numerical experiment testing the method (69) for partial information recovery
in incomplete checksums. The data indicated by the black line was stored in
k = 100 separate containers. m = 18 checksum vectors were created to protect
the content of the containers. The klost = 20 first containers are removed, i.e.
11% more data vectors are lost than checksum code vectors created. 70

33 The original version of the 16 images used to demonstrate the method out-
lined. Each image is 512x512 pixels, and stored in separate data containers
that are assumed to be failure prone. The images are taken from the The
USC-SIPI Image Database[73]. In figures 34 and 35, the partial information
recovery procedure is demonstrated when removing 4 and 6 images respec-
tively. 72

34 Three checksums were computed to protect the content of the 16 containers.
(a) Shows four images removed. (b) Depicts the recovered images. 73

35 Three checksums were computed to protect the content of the 16 containers.
(a) Shows six images removed. (b) Depicts the recovered images. 74

D1.3: Final report on ExaFLOW algorithmic developments 11

Abbreviations

AMR Adaptive Mesh Refinement
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy (condition)
CG Continuous Galerkin
DCT Discrete Cosine Transform
DMD Dynamic Mode Decomposition
DWT Discrete Wavelet Transform
DNS Direct Numerical Simulation
FLOPS Floating-Point Operations
GL Gauss-Legendre (quadrature rules)
GLL Gauss-Lobatto-Legendre (quadrature rules)
GMRES Generalised Minimal Residual Method
HDG Hybridisable Discontinuous Galerkin
HEVC High Efficiency Video Coding (Standard)
HPC High Performance Computing
I/O Input/Output
JPEG Joint Photographic Experts Group
Ma Mach number
PCG Preconditioned Conjugate Gradient
PDE Partial Differential Equation
POD Proper Orthogonal Decomposition
PSNR Peak Signal-to-Noise Ratio
Re Reynolds number
ROI Regions Of Interest
SA-DWT Shape-Adaptive Discrete Wavelet Transform
SEM Spectral Element Method
SPD Symmetric Positive Definite
WP Work Package

D1.3: Final report on ExaFLOW algorithmic developments 12

1 Introduction

Computational fluid dynamics (CFD) is an application area that can greatly benefit from
the use of exascale computing. In theory, we can use the massive computational power
than exascale platforms will offer to observe the many scales of flow physics that govern
important problems, such as the transition to turbulence across the wing of a commercial
airliner. In practice, however, making efficient fluid dynamics codes that can effectively,
efficiently and reliably utilise exascale resources is a significant challenge. A key issue in this
is the lack of massively parallel algorithms for fluid dynamics code in a wide range of areas
including adaptivity and error control, scalability, the amount of data generated at exascale
and consideration of fault tolerance.

Across the last 36 months, ExaFLOW partners in work package 1 (WP1) have been
working to develop new algorithms to tackle this challenge and enable fluid dynamics solvers
to make use of exascale systems. We have been developing algorithms in several of these
areas to address these key challenges:

• Mesh quality and grid adaptivity
Here, we focus on the challenge of developing scalable adaptive methods, where error
estimators drive an adaption process in order to make highly efficient use of large-scale
computational resources without a priori knowledge of the flow solution.

• Error control for heterogeneous modelling
By considering that different regions of the flow may be modelled with different ap-
proaches, we can reduce computational cost and increase scalability. In particular, we
have been investigating the interfaces between two modelling zones, as well as ensuring
that the distribution of work across nodes is regulated according to the variation of
flow scales.

• Mixed CG-HDG formulation
This work has investigated how to improve the scalability of state-of-the-art spectral
element methods and make them suitable for exascale computations by developing a
new mixed formulation based on continuous Galerkin (CG) and hybridisable discon-
tinuous Galerkin (HDG) discretisations, where each node performs a computationally
efficient CG solve, and combines this with a HDG system between nodes to minimize
communication costs.

• Data reduction
Simulations at exascale will produce huge amounts of raw data, which poses a sig-
nificant problem for post-processing and data analysis. We have been investigating
methods to reduce the amount of data that must be transferred from memory to disks
by using filters for structure extraction and data reduction, i.e. transforming the large
“raw” data to feature- or structure-based data which are orders of magnitude more
compact.

D1.3: Final report on ExaFLOW algorithmic developments 13

• Fault tolerance and resilience
This work focuses on the development of fault tolerant algorithms to ensure resilience
to hardware faults. Activities will address the development of suitable in-situ models
and strategies for detection and mitigation of hardware faults.

This deliverable, in particular, summarises the work achieved in these areas across the
last 18 months since the previous deliverable D1.2.

2 Error control and mesh refinement

A central theme of work package 1 has been the development of adaptive methods that can
automatically refine or coarsen a domain dependent upon the flow physics. In order to drive
this adaptive process, we require two processes: techniques for automatically determining
where the domain requires additional resolution or errors in the solution field, and the adap-
tive process that is used to apply this resolution in a large-scale simulation. In this section,
we consider error indicators and estimators for both the spectral element method (particu-
larly that used by Nek5000) and finite difference methods (for use in SBLI/OpenSBLI). We
then discuss how these are applied in the context of adaptive mesh refinement for Nek5000.

2.1 Spectral error indicators

The first type of error detection we consider is the spectral error indicator, which uses the
decay of an energy spectrum in order to determine whether the solution is underresolved
in a given area. The following sections outline this in the context of spectral elements and
finite difference methods.

2.1.1 Spectral element discretisations

The spectral error indicators for the spectral element method are based on a method de-
veloped by C. Mavriplis [55] and have been presented in detail in the deliverable D1.2. As
a reminder, these indicators are based on the knowledge of the spectral expansion of the
solution and give an indication of the L2-norm of the error on the solution. They are easy
to compute and induce a low overhead but have a tendency to refine regions of the mesh
that might be irrelevant for computations engineering interest. These indicators have been
chosen as a reference against which to compare the adjoint error estimators.

2.1.2 Finite difference discretisations

The error indicators formulated as part of Task 1.2 of WP1 (see Deliverable 1.2 for details)
have been successfully applied to the simulation of compressible flow past an airfoil. For
the initial assessment of the error indicator algorithms, results from a compressible NACA-
0012 wing profile were considered. This was presented at the ParCFD 2017 conference (see
[38] for more details). For the flagship calculation presented here, we are using a low-drag

D1.3: Final report on ExaFLOW algorithmic developments 14

R/c W/c Lz/c Nξ,2 Nη,2 Nξ,1/3 Nη,1/3 Nz Ntotal

7.5 6.0 0.05 2095 999 999 1023 50 2.07× 108

7.5 6.0 0.05 3045 999 1999 1023 150 1.07× 109

Table 1: Numerical grid details for the grid before (first row) and after refinement (second
row), detailed by [39].

compressible flow V2C profile for which the data was readily available and PRACE resources
were awarded for a project aimed at finding the limits of buffetting for this airfoil. The V2C
results described here have been published in Computers & Fluids (see [39]).

The metric upon which we will evaluate improvements is the reduction in the number of
superfluous grid points through the focussing of resolution with the aid of the error indicators.
In order to show such a reduction, two grids were considered: a relatively coarse grid and a
refined version which focussed resolution in areas of high error severity determined by the
indicators. Table 1 gives the dimensions and number of grid points used.

The airfoil incidence α was set to 4◦, the Reynolds number based on the aerofoil chord
Rec was 5× 105 (compared to 5× 104 for the NACA-0012 case), and Mach number M was
0.7 (compared to 0.4 for the NACA-0012 case). The computational domain is composed of
three blocks, as can be seen in Figure 1. Block 2 is a C-type structured grid fitted around
the airfoil surface; it interfaces with the structured Cartesian blocks 1 and 3, which resolve
the wake of the airfoil.

The simulation was performed using the legacy Fortran-based SBLI code. The error indi-
cators were implemented in a program whose code was mostly generated using the OpenSBLI
model development framework [37]. The solution fields stored in an HDF5 file were read
in by the program, and the error severity values at each error block were computed. Each
error block comprised 163 grid points. The z-component of vorticity was used to compute
the error severity.

The error severity values for the integer-based measure Ii (see D1.2 for details) are shown
in Figure 2 for both grids, and were computed once the flow became fully developed. In both
cases the uniform flow away from the aerofoil is mostly well-resolved as suggested by Ii values
of 0 or 1. However, in the coarse grid case high error severity can be found near the trailing
edge where eddy shedding occurs and where pressure waves are present. This suggests more
resolution would be required in these areas to adequately resolve the wake and potentially
less elsewhere, which facilitates the highly efficient simulation of large-scale industry-relevant
problems. Indeed, refining the grid clearly reduced the error in these regions. The persisting
small cluster of high error severity at the leading edge in both grids is due to a very thin
boundary layer, which was later treated by further grid refinement and localised filtering.

With respect to the goals of ExaFLOW, the error indicators have suggested where more
resolution needs to be placed and also where the grid may be coarsened, thereby facilitating
the highly efficient simulation of large-scale industry-relevant problems. The error indicators
code runs on various architectures (CPUs and GPUs) and is inherently scalable to large

D1.3: Final report on ExaFLOW algorithmic developments 15

Figure 1: Computational domain arrangement. Image by [39].

D1.3: Final report on ExaFLOW algorithmic developments 16

Figure 2: Contours of velocity magnitude in a two-dimensional slice (in the x–y plane at z
= 0) from a V2C aerofoil simulation. Circles filled with blue, green, yellow and red indicate
Ii error severity values of 0, 1, 2 and 3, respectively. The top and bottom images are for the
coarse and refined grids, respectively. Images by [39].

D1.3: Final report on ExaFLOW algorithmic developments 17

cases. The parallel efficiency of the OpenSBLI code on the UK supercomputing facility at
EPCC (ARCHER CPUs), the US supercomputing facility TITAN (CPUs and GPUs), and
the Cambridge supercomputing facility (latest GPUs) is documented in the WP2 deliverable
2.4. The grid generation approach is documneted in the WP3 deliverable 3.3.

2.2 Adjoint error estimators

Contrary to spectral error indicators, adjoint error estimators are goal–oriented and aim at
better computing a specific target value. We present the method for computing the adjoint
error estimators for the spectral element method, following the work in [4]. So far, only
the steady formulation has been considered. The method combines local information on the
solution with a global adjoint solution to the problem and gives an indication on where to
optimally refine the mesh to reduce the error on the functional.

2.2.1 Weak form of the steady Navier–Stokes equations

We start from the expression of the steady Navier–Stokes equations in the strong form

(u · ∇)u+∇p− 1

Re
∆u = f , (1)

∇ · u = 0, (2)

u|ΓD = gD, (3)

n · (∇u− pI) |Γo = go, (4)

where the velocity field u(x) = (u, v, w) and the pressure p(x) are defined on some domain
x ∈ Ω. The boundary of the domain ∂Ω is split into ΓD and Γo corresponding to Dirichlet
and outflow boundary conditions. Then, we express the corresponding weak form of the set
of equations as

Find û = (u, p),u ∈ X, p ∈ Z s.t.

A(û)(ψ̂) = 0 ∀ψ̂ = (ψ, χ), ψ ∈ X0, χ ∈ Z (5)

where

A(û)(ψ̂) =

{
((u · ∇)u,ψ)− (∇ ·ψ, p) + 1

Re
(∇u,∇ψ)− (f ,ψ)

(∇ · u, χ)

}
= 0. (6)

The spaces X and Z are appropriate spaces satisfying the boundary conditions [20]. The
notation (a, b) denotes the inner product

∫
Ω
a · b dx between two vector fields a and b.

2.2.2 Expression of the functional

As mentioned before, adjoint error estimators are based on the computation of a functional
of interest. We consider the following general form for the functional:

J(û) =

∫
Ω

û · jΩ dV +

∫
ΓD

(
1

Re
∇nu− pn

)
· jΓD ds+

∫
Γo

u · jΓo ds, (7)

D1.3: Final report on ExaFLOW algorithmic developments 18

where jΩ = (jΩ,u, jΩ,p), jΓD and jΓo are some coefficients. In the case of the drag on a body
in a flow for example, jΩ = 0, jΓo = 0 and jΓD is a unit vector oriented parallel to the bulk
flow, defined on the body of interest, zero otherwise.

2.2.3 Lagrange optimisation

To estimate the error, the following Lagrangian operator is defined as a function of the
adjoint solution û† = (u†, p†)

L(û, û†) = J(û)− A(û)(û†) (8)

and its stationary points are found by solving the problem [4]

L′(û, û†)(φ̂, ψ̂) =

{
J ′(û)(φ̂)− A′(û)(φ̂, û†)

−A(û)(ψ̂)

}
= 0 ∀{φ̂, ψ̂}. (9)

The various terms appearing are

• J ′(û)(φ̂), the derivative of J(û) with respect to û (i.e. the linearisation of the func-
tional around a solution û),

• A′(û)(φ̂, û†), the derivative of A(û)(û†) with respect to û (i.e. the linearised adjoint
Navier–Stokes equations in weak form around a solution û),

• A(û)(ψ̂), the original problem in weak form.

2.2.4 Adjoint equations

Using integration by parts, it is possible to derive the following adjoint problem around a
solution û associated to the functional J(û) as

−(u · ∇)u† + uTu† −∇p† − 1

Re
∆u† = jΩ,u, (10)

−∇ · u† = jΩ,p, (11)

u†|ΓD = jΓD , (12)(
1

Re
∇nu

† + p†n+ (u · n)u†
)
|Γo = jΓo . (13)

An analysis of the consistency of the adjoint solution and the extension to non-linear func-
tionals are discussed in [33].

2.2.5 Error on the functional

If the Galerkin approximations ûh and û†h are used instead of the exact solutions, Rannacher
and Bangerth [4] prove that the error on the functional can be approximated by

J(û)− J(ûh) = δJ ≈ δJest = A(ûh)(û
† − û†h), (14)

D1.3: Final report on ExaFLOW algorithmic developments 19

where δJest denotes the estimated error on the functional of interest. This expression is valid
in the general case of the Galerkin approximation and should be specified in more details for
the case of a SEM solution.

2.2.6 Contributions to the error

The approximate solutions of polynomial order N , denoted ûN = (uN , pN) and û†N =(
u†N , p

†
N

)
, arising from the SEM discretisation are now introduced into the expression of the

error. Assuming that the domain Ω is split in E subdomains Ωe with boundaries Γe, the
error δJest can be computed as a sum over all the elements as

δJest = A(ûN)(û† − û†N) (15)

=
E∑
e=1

(
(uN · ∇)uN ,u

† − u†N
)

Ωe
−
(
∇ · (u† − u†N), pN

)
Ωe

+
1

Re

(
∇uN ,∇(u† − u†N)

)
Ωe

−
(
f ,u† − u†N

)
Ωe

+
(
∇ · uN , p† − p†N

)
Ωe
. (16)

This is then integrated by parts

δJest =
∑E

e=1

(uN · ∇)uN −
1

Re
∆uN +∇pN − fN︸ ︷︷ ︸

R1(û)

,u† − u†N

Ωe

+

 1

Re
∇nuN − pNn︸ ︷︷ ︸

R2(û)

,u† − u†N

Γe

+

∇ · uN︸ ︷︷ ︸
R3(û)

, p† − p†N

Ωe

. (17)

The quantities R1(û) and R3(û) are the strong cell residuals of the momentum and continuity
equations, respectively, while R2(û) represents the normal stresses along the boundary of
each element. The second term can be rewritten by noting that the normal vectors n along
the shared edge between two adjacent cells have opposite signs and by attributing half of
the jump to each element. Therefore, the face residuals r(û)|Γ along the edge Γ can be seen
as 1

2
[R2], half the jump of R2 across the edge, such that the residuals are rewritten as

r(û)|Γ =

1
2
[− 1

Re
∇nuN + pNn] if Γ ⊂ Γe\∂Ω,

0 if Γ ⊂ ∂ΓD,
1
Re
∇nuN − pNn if Γ ⊂ ∂Γo.

(18)

D1.3: Final report on ExaFLOW algorithmic developments 20

Consequently, the error on the functional is bounded by

δJest ≤
∑E

e=1 ‖R1(û)‖L2(Ωe)︸ ︷︷ ︸
ρ1,e

∥∥∥u† − u†N∥∥∥
L2(Ωe)︸ ︷︷ ︸

ω1,e

+ ‖r(û)‖L2(Γe)︸ ︷︷ ︸
ρ2,e

∥∥∥u† − u†N∥∥∥
L2(Γe)︸ ︷︷ ︸

ω2,e

+ ‖R3(û)‖L2(Ωe)︸ ︷︷ ︸
ρ3,e

∥∥∥p† − p†N∥∥∥
L2(Ωe)︸ ︷︷ ︸

ω3,e

(19)

≤ ∑E
e=1 ρ1,eω1,e + ρ2,eω2,e + ρ3,eω3,e. (20)

Two categories of terms appear in Eq. (20). The residuals ρi,e, which are a measure of the
strong residuals of the solution and ωi,e, or adjoint weights, a measure of the interpolation
error on the adjoint solution in the L2-norm. To start with the computation of the ρi,e terms,
we note that they are already available from the solver. Presuming continuous and smooth
data and also that the solution is spectrally accurate, the boundary terms and associated
jumps are ignored (i.e. the terms ρ2,e). The remainders R1(û) and R3(û) can be computed
in a straightforward fashion by reusing the operators available in the solver.

For high Reynolds numbers, it is worth noting that the jump in the viscous stresses be-
comes negligible. However, since the PNPN−2 version of Nek5000 is used for the simulations,
the pressure is not continuous at the interface and the term cannot be completely dropped
out a priori. However, the pressure discontinuity is also comparably small and therefore it
is expected that this term does not constitute the main source of error, as will be shown by
the a posteriori analysis further down.

The interpolation errors ω1,e and ω3,e can be estimated by the a priori estimate of the
interpolation error [20]

‖u− uN‖L2(Ω) ≤ CN1/2N−m ‖u‖Hm(Ω) , (21)

where C is a constant independent of N and m is the order of the H-norm. In practice,
what is computed instead is∥∥∥u† − u†N∥∥∥

L2(Ωe)
. CeN1/2N−m

∥∥∥u†N∥∥∥
Hm(Ωe)

, (22)

where it is assumed that the interpolation constant Ce is different for each element. Both
the H-norm for orders m = 0 and m = 1 have been implemented but only the case m = 1
has been used for the results that follow.

The choice of Ce, the interpolation constant on element e, is capital to obtain a good
estimate of the interpolation error and a tight bound on the adjoint error estimator. The
actual value of the constant is difficult to determine, but it should be dependent on properties
of the element it is evaluated on. Therefore, it is assumed that the constant is

Ce = (vole)
1
d , (23)

D1.3: Final report on ExaFLOW algorithmic developments 21

Figure 3: Vortical structures (λ2 criterion) of the velocity field around the wing (left panel)
and the part of the domain covered by refinement levels higher and equal 2 (right panel) at
simulation time 7.2 for Rec = 2 ∗ 105 case.

where vole is the volume of element e (area in 2D) and d is the dimension of the problem.
One reference [4] mentions that the interpolation constant is typically of size 0.2 in the case of
the FEM. A more detailed discussion on the choice of the interpolation constant is presented
by [40], where some indications on how to estimate the constant are given depending on the
norm considered and the type of element in the case of the finite element method.

2.3 Adaptive mesh refinement

In this section we describe the progress we have made in adapting Spectral Element Method
(SEM) to h-type Adaptive Mesh Refinement (AMR) framework, which we consider to be an
important component of the future exascale CFD solvers. The algorithms developed in this
work package were implemented in SEM solver Nek5000 and tested within work packages 2
and 3, respectively. The result of our work is fully functional nonconforming incompressible
Navier-Stokes equations solver that estimates computational error and accordingly modifies
the computational mesh during the simulation. This method was used to perform one of
the ExaFLOW flagship simulations: the fully adaptive 3D simulation of the turbulent flow
around NACA 4412 wing profile at Reynolds number Rec equal 2 ∗ 105 and 1 ∗ 106. Fig. 3
presents initial results of Rec = 2 ∗ 105 case. Left and right panels show vortical structures
of the velocity field around the wing and the part of the domain covered by refinement levels
higher and equal 2 at simulation time 7.2, respectively. These simulations are discussed in
detail in WP3 deliverable D3.3.

Our main goal is to develop efficient tools for dynamic mesh modification and to adapt
algorithms implemented in Nek5000 to nonconforming meshes. This work was started with
development of nonconforming advection-diffusion equation solver (EU project CRESTA)
which was later extended to the incompressible Navier-Stokes problems within ExaFLOW. In
the previous WP1 and WP2 deliverables D1.2 and D2.2, we described number of components
of AMR framework, one of the components was the efficient pressure preconditioner. There

D1.3: Final report on ExaFLOW algorithmic developments 22

are three major modifications required to adapt Nek5000 for nonconforming meshes:

• diagonalisation of the global mass matrix QTBLQ,

• redefinition of the base functions for the assembly of the coarse-grid operator bTi A
kbj

to neglect hanging nodes,

• redefinition of the direct stiffness summation operator QQT to include spectral inter-
polation J at the nonconforming faces and edges.

In following paragraphs we describe current development concerning pressure precondi-
tioners, solver stabilisation and mesh partitioning.

2.3.1 Adaptation of the hybrid Schwarz-multigrid preconditioner to noncon-
forming meshes

Nonconforming pressure preconditioners are important because pressure operator is a main
source of stiffness for incompressible flow simulations. There are two different pressure
preconditioners implemented in Nek5000 based on the additive overlapping Schwarz method
[24, 26] and on the hybrid Schwarz-multigrid method [29, 53], respectively. The first one
was described in detail in WP1 deliverable D1.2 and is based on combining solutions of the
local Poisson problems in overlapping subdomains RT

k Â
−1
k Rk with the coarse grid problem

RT
0 Â
−1
0 R0, which is solved on few degrees of freedom, but covers the entire domain

M−1 = RT
0 Â
−1
0 R0 +

∑
k

RT
k Â
−1
k Rk,

with R and RT being the restriction and prolongation operators respectively. In the local
problem, Rk and RT

k transfer data to and from the subdomain, Âk is just a local stiffness ma-
trix. On the other hand, the coarse grid problem is solved on the element vertices only with
RT

0 being the operator interpolating the coarse grid solution onto the tensor product array
of GL points in the reference element. We have to stress here the difference between local
and coarse restriction/prolongation operators, which became important for nonconforming
solver. The first one connects overlapping subdomains at the same resolution level, and the
second one acts between different levels. To retain performance of the conforming solver,
the nonconforming versions of the local and coarse operators have to execute different direct
stiffness operators, i.e. JLQQ

TJ−1
L and JLQQ

TJTL , respectively.
On the other hand, the hybrid Schwarz-multigrid prconditioner is based on the multi-

plicative Schwarz method, which for two levels scheme takes the form

M−1 = RT
0 Â
−1
0 R0

[∑
k

RT
k Â
−1
k Rk

]
,

D1.3: Final report on ExaFLOW algorithmic developments 23

and leads to the following two-level multigrid scheme:

i) u1 =
∑
k

RT
k Â
−1
k Rkg,

ii) r = g − Au1,

iii) e = RT
0 Â
−1
0 R0r,

iv) u = u1 + e,

where g, r, e and u are right hand side, residual, coarse-grid error and solution of equation
Au = g, respectively. This method can be extended to general multilevel solver performing
full V cycle (see e.g. [26]). Notice that by replacing ii) with r = g we obtain the additive
Schwarz preconditioner.

As both additive and multiplicative methods share number of features (e.g. coarse grid
solver), their adaptation to nonconforming meshes is similar and consists of proper redef-
inition of operators at each multigrid level. Analogous to the additive Schwarz method
we distinguish between Schwarz (acting at single level) and restriction (connecting different
levels) operators, and apply different direct stiffness summation for each of them.

Unlike the additive preconditioner the hybrid one requires redefinition of the diagonal
weight matrix as well, that indicates the number of sub-domains sharing a given node, and
is used to accommodate overlapping regions. Its value is important as it reduces maximum
eigenvalue of MA operator and defines smoothing properties of the additive Schwarz step (see
[26] and references therein). In conforming case its definition is straightforward, however the
nonconforming case is more problematic as hanging nodes are not real degrees of freedom. In
the current implementation the information about node multiplicity on the nonconforming
faces is hidden to the parent element, so the parent element sees only one neighbour instead
of two (four in 3D). Although this choice gives preconditioner, that significantly reduces
number of pressure iterations, its performance for the studied cases is slightly worse than
performance of the additive Schwarz preconditioner. This can be caused by an nonoptimal
value of the weight matrix, or by the fact that the hybrid preconditioner is superior over the
additive one for high-aspect ratio elements, that are not present in our adaptive simulations.
In the future we are going to investigate other definitions of the weight matrix. In addition
we are going to investigate and adapt for AMR framework pressure preconditioners based
on the restricted additive Schwarz method [12, 22].

2.3.2 Solver stabilisation based on high-pass filter

Stability of numerical methods is a challenging problem, especially for solvers with little
numerical viscosity like Nek5000. That is why number of different stabilisation methods
were developed and two of them are currently implemented in Nek5000. The original one is
the filter-based approach [25], which is an explicit filter that suppresses short waves in the
spectra of each element by directly decreasing their amplitude. Unfortunately, this violates
divergence-free condition, so a new relaxation-term-based approach was developed [57]. In
this case the damping term is added to the forcing that remedies some of the explicit filter

D1.3: Final report on ExaFLOW algorithmic developments 24

Figure 4: 1 Linear masking function restricting action of the high-pass filter to the noncon-
forming interfaces for 2D wing simulation.

drawbacks. We have to mention here that relaxation technique is a general method used for
different purposes e.g. LES simulations [63].

Unfortunately, the stability of nonconforming solver is even more challenging than the
conforming one. It is related to conforming-space/nonconforming-mesh approach [45, 28]
we have adapted in our implementation. In this case functional space is continuous across
nonconforming faces, that simplifies implementation as mortar elements can be replaced by
simple interpolation operator, but in some specific situations it leads to instability. This
instability can be observed if the lower resolution element (parent) is located downstream
with respect to the high resolution region (children), and the advected field contains more
information (smaller scale structures) than can be represented by the parent element. As the
field values at the interface are set upwind by the low resolution parent, the interface acts
as partially reflective boundary and leads to the oscillations. In most cases these oscillations
remain small and are suppressed by AMR itself, as it would take care of the unresolved
regions. However in some situations (e.g. user overwriting error indicator marks to addition-
ally reduce resolution in not interesting regions) they can grow and even cause the simulation
to crash. To avoid such a situation we added stabilisation mechanism that is supposed to
partially diffuse small scale structures in the vicinity of the nonconforming interfaces. We
achieve this using relaxation-term-based approach by adding high-pass filter to the forcing
term:

du

dt
= L(u)− χ ∗m(r) ∗H(u),

where L(u), χ, m(r) andH(u) are evolution operator, relaxation coefficient, masking function
and transfer function removing half of high frequency modes, respectively.

The masking function is used to restrict forcing to the interior of the children elements
touching nonconforming faces only. This function is equal to 1 at nonconforming interface,

D1.3: Final report on ExaFLOW algorithmic developments 25

Figure 5: Domain decomposition for one-level (left) and two-level (right) partitioning in 3D
wing simulation at Re = 2 ∗ 105. In red is visualised a part of the domain residing on the
second node (cores 32-64). The wing position is marked in blue.

it linearly decreases inside child element, and is 0 everywhere else as is presented in Fig. 4.
Notice that m(r) forms a set of closed loops at every interface between different refinement
levels, as we do not distinguish between local inflow and outflow conditions. This however
does not influence significantly the solution, as the flow entering high resolution region does
not contain small scale features that would be damped. Moreover, the forcing is discontinuous
at the nonconforming interface, as it is set to 0 inside all the parents, but this does not cause
a problem, as forcing is not required to be continuous.

Efficiency of this method depends on the value of relaxation coefficient and setting its
value is not straightforward. Too low value of χ would make filter inefficient, but on the
other hand too strong forcing could remove important flow features. Based on our current
experience we set χ = 0.5, but more investigation of this problem is necessary. In the future
we are going to drop assumption of conforming functional space and implement mortar
elements in the solver that should increase stability.

2.3.3 Two-level partitioning

Our previous investigation have shown the grid partitioning to be an important constraint
for AMR simulations. For advection-diffusion problems (results of CRESTA EU project) the
main limitation came from the strong scaling limit of the library performing bisection itself
(in this case ParMetis). Although Nek5000 can efficiently scale up to a million MPI ranks
with only a few elements (approximately 2000 grid points for BG Mira at Argonne National
Laboratory) per single MPI rank, the calculations performed on Cray machine Lindgren at
PDC (Sweden) showed that AMR simulation is dominated by graph bisection (spending
more than 50% of computing time) if there was less than 50 elements per core with total
32000 MPI ranks.

In the case of incompressible Navier-Stokes equations the problem gets more complicated,
as the pressure calculations require an expensive coarse grid solver, that sets the new strong

D1.3: Final report on ExaFLOW algorithmic developments 26

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200

T
im

e
 [

s]

Iteration

one-level

two-level

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200

T
im

e
 [

s]

Iteration

one-level

two-level

Figure 6: Time of pressure preconditioner execution (left) and time per time step (right) for
one- and two-level partitioning. Results of a 3D wing simulation at Re = 2 ∗ 105.

scaling limit [27]. There are two coarse grid solvers implemented in Nek5000 : AMG and
XXT. The ExaFLOW development related to the first one is described in the previous sec-
tion, and in this section we focus on the second one. XXT [69] is based upon a (quasi-) sparse
factorisation of the inverse of operator matrix and its performance is strongly dependent on
domain decomposition. In addition, in the case of AMR we have to take into account the
solver setup phase as well, as it is executed after each refinement phase. This setup phase
can be very expensive and depending on the grid topology can take several minutes. That is
why is it crucial to optimise mesh decomposition for XXT and to use grid partitioners based
on graph bisection. Our tests revealed that a naive use of parallel graph partitioners such as
the ParMetis library, where all MPI ranks take part in single step (one-level) partitioning,
can lead to a suboptimal mesh distribution. We identified a possible cause of this being that
most graph partitioners often do not take into account the distribution of the cores between
the nodes, and the resulting partitioning is not continuous in space. The outcome is a mesh
decomposition in which cores residing on single node contain grid parts corresponding to
different graph branches, so the domain on single node is not continuous, as is visible on
the left plot in Fig. 5. This has a strong impact on XXT setup and solver performance, as
at each computational level it has to use slow inter-node communication. The optimal ap-
proach would be placing the whole graph branch on a single node and execute fast intra-node
communication for some set of levels. We have to mention here that ParMetis gives such
suboptimal partitions, even though we provide physical coordinates of each graph node.

The possible remedy to this problem could be proper renumbering of the graph nodes or
keeping additional information about neighbouring domain subsets. However, in our case the
node numbering is provided by grid manager (p4est library) and there is no simple way to
alter it. That is why we have tested simple two-level partitioning, in which we split inter- and
intra-node graph bisection. The first step is executed on all the MPI ranks at the same time
with a single communicator, this provides a partitioning in which a whole graph branch is
located on a single node (see left plot in Fig. 5). In the next step we generate in parallel on all
the nodes independently, an intra-node graph and perform local graph bisection using only

D1.3: Final report on ExaFLOW algorithmic developments 27

fast intra-node communication. According to our observation, the intra-node partitioning
is usually two orders of magnitude faster than the inter-node one. This method allows to
optimise mesh decomposition and speed up XXT setup and solver phases, but is strongly
dependent on the quality of the first partitioning. If the first step would place disjoint graph
on a single node, the second step could fail.

We investigated the performance of one- and two-level partitioning using 3D turbulent
wing case at Re = 2 ∗ 102 with 224328 element on 512 cores distributed among 16 nodes.
The partitioning time and element imbalance was similar for both cases and was equal to
1.2 sec and 34 elements versus 1.2 sec and 33 element for one- and two-level partitioning
respectively. On the other hand there was a strong impact on XXT setup time, where the
initial setup time of 765.2 sec. (one-level) was reduced to 76.9 sec. (two-level). We have to
mention here that the gain on the 2048 was much higher, and the setup time was reduced
by more than two orders of magnitude showing strong dependence of XXT scaling on mesh
partitioning. The benefit for XXT solver phase is is less prominent, but still significant, as
the pressure preconditioner time was reduced by almost 50% (left plot in Fig. 6), giving time
per time-step shorter by 15% (right plot in Fig. 6).

2.4 Error control for heterogeneous modelling

In many applications, such as strongly separated flows or rough boundary layers, it may
be desireable to solve the Navier-Stokes equations directly on a fine grid and model the
turbulence in regions where one is confident with the accuracy of the chosen turbulent
model.

The present work focuses on incompressible wall-bounded flows and combines direct
numerical simulations (DNS) with one-point turbulence closures (RANS), to investigate the
grid point requirement to perform simulations for industrial surfaces at higher Reynolds
number. These methods are incorporated into a second-order accurate finite-differences on
a staggered grid for the spatial discretisation and a second-order accurate Adams-Bashforth
mothod for the time integration [10].

2.4.1 Methodology

Mean quantities are defined based on averaging out the dimensions xi over which the solution
is expected to be statistically homogeneous. In the case of the channel flow (studied here)
these are x1 and x2, the stream- and span-wise directions, respectively.

Indicating averages by 〈〉 and mean quantities by the capitals, the equation to be solved
is

∂u1

∂t
+
∂uiuj
∂xj

− β〈∂uiuj
∂xj

〉 =
∂p

∂xi
+ β〈 ∂p

∂xi
〉+ ν

∂2ui
∂xj∂xj

+Gi + β
∂

∂x3

(
νt
∂Ui
∂x3

)
, (24)

where β acts as a switch between the DNS and RANS regions, Gi is the force driving the
flow and νt is the eddy viscosity.

D1.3: Final report on ExaFLOW algorithmic developments 28

Notice that when β = 0, equation 24 reduces to the classical incompressible Navier-Stokes
equations while for β = 1 we obtain the RANS equation (simplified for the turbulent channel
flow). Thus, the mean velocity U1 (U2 = 0 = U3) satisfies

∂U1

∂t
+ β〈∂u

′
1u
′
3

∂x3

〉+ β
∂

∂x3

(
νt
∂U1

∂x3

)
= ν

∂2U1

∂x2
3

+G1 (25)

with β = 1− β and ()′ represents the turbulent quantities.
Equations 24 and 25 ensure that in the region where the DNS is active the mean flow

is driven by the correct Reynolds stresses while in regions where the DNS may be under-
resolved the RANS solution drives the under-resolved DNS. Thus reducing the grid point
requirement compared to full scale DNS.

2.4.2 Results

The hybrid DNS/RANS methodology is incorporated and tested for a turbulent channel flow
and the mixing length hypothesis was used to determine νt used in the RANS equations.
A domain of 2πδ × πδ × 2δ is used in the stream-, span-wise and wall-normal directions,
respectively, where δ is the channel’s half-height. Periodic boundary conditions are applied
in the streamwise and spanwise directions (x and z).

A fully resolved DNS of a turbulent channel flow is performed using 128 × 128 × 128
grid points at a Reynolds number of 180 based on the friction velocity. The grid points are
clustered near the walls using a hyperbolic tan function. Statistics are recorded for 100 flow
through times after the transients. These are used to compare the results for the hybrid
DNS/RANS approach.

Different approaches can be used to switch the solution from DNS to RANS and in this
work three different forms are used to determine their impact on the solution. The first is
a cutoff function approach in which a prescribed set value of β is used to switch between
DNS and RANS, in the second and third approaches we follow a sinusoidal profile with
half-periods 20, 40 times the viscous length scale (δν) respectively to switch.

Figure 7 shows the mean velocity profile in the wall-normal direciton using a cutoff
function which varies from 0 − 180 with 0 representing a full RANS simulation and 180
represents a full DNS. It should be noted that the same grid used in the DNS is used for
these simulations. The cutoff function approach doesn’t follow a simple trend, this might
be due to sudden change from DNS to RANS and not all information on the small scale
fluctuations are transferred to RANS through the eddy viscosity.

Similarly, Figures 8 and 9 shows the behaviour of mean velocity profiles in the wall-
normal direction for the sinusoidal blending of the solution. The hybrid solutions become
slightly distorted when β varies slowly and approach the DNS solution when the solution
starts blending just above the buffer region.

In the final analysis, the effect of grid points on the mean velocity profile is studied for
a hybrid simulation with β following a sinusoid of half-period 40δν . Figure 10, the mean
velocity obtained with this methodology is rather close to the DNS solution, even when the
grid is coarsened by a factor of 4 in the wall normal direction.

D1.3: Final report on ExaFLOW algorithmic developments 29

10
0

10
1

10
2

y
+

0

2

4

6

8

10

12

14

16

18

20

U
1+

DNS

1
=0

1
=5.625

1
=11.25

1
=22.5

1
=45

1
=90

1
=180

Figure 7: Mean velocity profiles using a cutoff β. The dashed lines indicate β1 which is
where β switches from 0 to 1.

10
0

10
1

10
2

y
+

0

2

4

6

8

10

12

14

16

18

20

U
1+

DNS

1
=0

1
=5.625

1
=11.25

1
=22.5

1
=45

1
=90

1
=180

Figure 8: Mean velocity profiles using β following a sinusoid of half-period 20δν . The dashed
lines indicate the bounds where β varies from 0 to 1. The location at which the sinusoid
starts is identified by β1.

D1.3: Final report on ExaFLOW algorithmic developments 30

10
0

10
1

10
2

y
+

0

2

4

6

8

10

12

14

16

18

20

U
1
+

DNS

1
=0

1
=5.625

1
=11.25

1
=22.5

1
=45

1
=90

1
=180

Figure 9: Mean velocity profiles using β following a sinusoid of half-period 40δν . The dashed
lines indicate the bounds where β varies from 0 to 1. The location at which the sinusoid
starts is identified by β1.

10
-1

10
0

10
1

10
2

y
+

0

2

4

6

8

10

12

14

16

18

20

U
1+

DNS

DNS/RANS fine

DNS/RANS coarse

Figure 10: Mean velocity profiles obtained with DNS and blended DNS/RANS on a fine
(identical to the DNS) and coarse (4 times fewer points in the wall normal direction) grids.

D1.3: Final report on ExaFLOW algorithmic developments 31

In the current simulations, the hybrid approach has used 25% of grid points to produce
a result within 2% of the DNS results. Hybrid simulations can drastically reduce the grid
point requirement for practical flows and replicating the flow physics at a reasonable cost.

3 CG-HDG formulation

3.1 Motivation

3.1.1 Weak boundary condititions as part of CG-HDG formulation

The combined CG-HDG formulation was motivated by our search for efficient algorithms
for incompressible Navier-Stokes equations that employ high-order space discretization and
a time splitting scheme. The cost of one step in time is largely determined by the amount
of work needed to obtain the pressure field, which is defined as a solution to a scalar elliptic
problem. Several Galerkin-type methods are available for this task, each of them have specific
advantages and drawbacks.

High-order continuous Galerkin (CG) method is the oldest. Compared to its discon-
tinuous counterparts, it involves a smaller number of unknowns (figure 11), especially in
a low-order setting. The CG solution can be accelerated by means of static condensation,
which produces a globally coupled system involving only those degrees of freedom on the
mesh skeleton. The element interior unknowns are subsequently obtained from the mesh
skeleton data by solving independent local problems that do not require any parallel com-
munication. The amount of information interchanged while constructing and solving the

Figure 11: Distribution of unknowns for continuous and discontinuous Galerkin methods.

statically condensed system, however, is determined by the topology of the underlying grid.
Unstructured mesh generators often produce meshes with high vertex valency (number of
elements incident to given vertex) and CG therefore has rather complex communication
patterns in parallel runs, which has a negative impact on scaling [75].

D1.3: Final report on ExaFLOW algorithmic developments 32

Discontinuous Galerkin (DG) methods [3], on the other hand, duplicate discrete vari-
ables on element boundaries, thus decoupling mesh elements and requiring at most pairwise
communication between them. This is at the expense of larger linear system and more time
spent in the linear solver. Discontinuous discretization is therefore expected to scale better
on parallel computers, but the improved scaling is not necessarily reflected in significantly
smaller CPU times when compared to a CG solver.

Hybrid discontinuous Galerkin (HDG) methods [17] address this problem by introduc-
ing an additional (hybrid) variable on the mesh skeleton. The hybrid degrees of freedom
determine the rank of the global system matrix and HDG therefore produces a statically
condensed system that is similar in size to the CG case. In contrast with CG, the static
condensation in HDG takes place by construction rather than being an optional iterative
technique. Similarly to the classical DG method, HDG scales favourably in comparison with
CG, but the work-to-communication ratio is once again improved due to increased amount
of intra-node work rather than due to better overall efficiency.

To take advantage of the efficiency and lower memory requirements of continuous Galerkin
method together with the flexibility and more favorable communication patterns of discontin-
uous Galerkin methods in domain-decomposition setting, we combine both as follows. Each
mesh partition is seen as a ’macro-element’, where the governing equation is discretized by
continuous Galerkin solver, while the patches are coupled together weakly as in HDG (Figure
12). This setting leads naturally to a formulation of weak Dirichlet boundary conditions for
the CG method, which is the main focus of discussion for this section. We note that the
following text is adapted from a publication submitted to J. Comp. Phys.

Figure 12: Mesh decomposition in CG-HDG setting. Each partition is discretized by a contin-
uous Galerkin method. Coupling between partitions is weak and information is transmitted
through a hybrid variable (red degrees of freedom).

3.1.2 Weak boundary conditions in underresolved flows

Weak boundary conditions have the potential to provide additional stability to high-order
methods in high-fidelity simulations. The geometric flexibility and ability to efficiently uti-

D1.3: Final report on ExaFLOW algorithmic developments 33

lize modern computing hardware [72] make high-order methods particularly attractive in
various application areas such as Large-Eddy Simulations (LES) over complex industrial ge-
ometries [52], which can be used to gain detailed insight into flow physics. In our case, these
are based on the incompressible Navier-Stokes equations and can be efficiently tackled using
discretizations which employ high-order elements in space and a time-splitting scheme [42]
that involves the solution of four scalar elliptic equations for pressure and velocity compo-
nents respectively. The cost of one time step in this scheme is then largely determined by
the amount of work needed to obtain the pressure field, which is defined as a solution to a
(frequently ill-conditioned) scalar elliptic Poisson equation.

Figure 13: Implicit LES of a wingtip vortex using a high-order hp/spectral element solver.
Reproduced from [52].

The difficulty in solving the governing equation for pressure is further increased when
one considers complex flow features, for example the formation and evolution of a wingtip
vortex simulated by a high-order method (Figure 13). Under-integration of nonlinear terms
in Navier-Stokes equations introduces an aliasing error which may compromise the stability
of the simulation [43]. This is usually not problematic when the flow features are adequately
resolved. Once the buildup of aliasing errors becomes an issue, however, the stability of the
solver is often compromised in vicinity of (wall) boundaries. This problem further motivated
our search for a weak formulation of Dirichlet boundary terms, which are needed for the
CG-HDG formulation.

3.1.3 Review of existing algorithms for boundary discretization

Boundary conditions in the form of penalty terms can be incorporated into the variational
form using the approach first described by Nitsche [58] and later on developed in a number
of other papers, for example in [30] or [41]. We compare its accuracy and performance with
our method in Section 3.13.

D1.3: Final report on ExaFLOW algorithmic developments 34

Other work on weak imposition of Dirichlet boundary conditions includes the contribution
of Bazilevs et al. [6]. The authors used their formulation to solve an advection-diffusion
problem and incompressible Navier-Stokes equations with low-order stabilized finite element
methods. The Dirichlet constraints were incorporated directly into the variational form as
Euler-Lagrange equations. In their paper [7], the authors note that the conditions render
the simulation more robust on coarse meshes where near-wall resolution is low.

Conceptually similar mechanisms can also be found in the works of Liakos [49], Liakos
and Caglar [11], Layton [47] and Urquiza et al. [70], where the discrete form of the governing
law together with weak boundary conditions is again enforced either by Lagrange multipliers
or by penalizing certain components of the velocity field on wall boundaries. The existing
body of work differs from our contribution in terms of scope, however. We are interested in
elliptic problems and high-order Galerkin finite element methods, while the references cited
above consider conservation laws of advection-diffusion type and use low-order stabilized
methods.

3.2 Overview of the formulation of HDG method

We begin with a brief recap of the standard HDG formulation for a finite element mesh,
following a similar approach to that taken in [44] and [75].

3.3 Continuous problem

We seek the solution of a Poisson equation as a representative elliptic problem

−∇2u(x) = f(x) x ∈ Ω, (26)

u(x) = gD(x) x ∈ ∂ΩD,

n · ∇u(x) = gN(x) x ∈ ∂ΩN ,

on a domain Ω with Dirichlet (∂ΩD) and Neumann (∂ΩN) boundary conditions, where
∂ΩD

⋃
∂ΩN = ∂Ω and ∂ΩD

⋂
∂ΩN = ∅. To formulate the HDG method, we consider

a mixed form of (26) by introducing an auxiliary variable q = ∇u:

−∇ · q = f(x) x ∈ Ω, (27)

q = ∇u(x) x ∈ Ω, (28)

u(x) = gD(x) x ∈ ∂ΩD, (29)

q · n = gN(x) x ∈ ∂ΩN . (30)

The gradient variable q is approximated together with the primal variable u, which contrasts
with the CG method and other discontinuous methods for (26).

3.4 HDG interpolation spaces and discretization

We limit ourselves to two-dimensional problems for sake of simplicity, but the formal descrip-
tion remains unchanged in three dimensions. We assume that in the discrete setting, the

D1.3: Final report on ExaFLOW algorithmic developments 35

Figure 14: Computational domain and its tesselation demonstrating notation used in the
text.

Figure 15: Index mappings relating edge and element ids.

computational domain Ω is approximated by its tesselation Th consisting of non-overlapping
and conformal elements Ke such that for each pair of distinct indices ei 6= ej, K

ei ∩Kej = ∅.
The symbol Γl denotes an interior edge of the tesselation Th, i.e. an edge Γl = K̄i∩K̄j where
Ki and Kj are two distinct elements of the tesselation. We say that Γl is a boundary edge
of the tesselation Th if there exists an element Ke such that Γl = Ke ∩ ∂Ω and the length of
Γl is not zero, as shown in figure 14. The set of all internal edges is denoted by E0

h, while E∂h
is a set of all boundary edges. Their union Eh comprises of all mesh edges, Eh = E0

h ∪ E∂h .
In order to describe some terms in the HDG formulation, it is also useful to introduce

mappings that relate elements to their local edges, as shown in figure 15. Let ∂Ke
j be the

j-th edge of element Ke, and suppose that this is also the l-th edge Γl in the global edge
numbering. Then we define the local-to-global edge mapping σ by setting σ(e, j) = l so that
we can write ∂Ke

j = Γσ(e,j). An interior edge Γl is the intersection of the boundaries of two
elements Ke and Kf , hence we set η(l,+) = e and η(l,−) = f in order to be able to write
Γl = ∂Kη(l,+) ∩ ∂Kη(l,−).

D1.3: Final report on ExaFLOW algorithmic developments 36

3.5 Approximation spaces

The finite element spaces supported by the (two-dimensional) tesselation Th are defined as
follows:

Vh := {v ∈ L2(Ω) : v|Ke ∈ P(Ke) ∀Ke ∈ Th},
Σh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th},
Mh := {µ ∈ L2(Ω) : µ|Γl ∈ P(Γl) ∀Γl ∈ Γ},

where P(Γl) = SP (Γl) is the polynomial space over the standard segment

SP (Γl) = {sp : 0 ≤ p ≤ P, [x1(s), x2(s)] ∈ Γl, −1 ≤ s ≤ 1},

and P(Ke) is the space of polynomials of degree P defined on a standard region, which can
either be the standard triangle

P(Ke) = TP (Ke) = {ξp1ξqw : 0 ≤ p+ q ≤ P, [x1(ξ1, ξ2), x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1 + ξ2 ≤ 0},

or standard quadrilateral

P(Ke) = QP (Ke) = {ξp1ξq2 : 0 ≤ p, q ≤ P, [x1(ξ1, ξ2), (x2(ξ1, ξ2)] ∈ Ke, −1 ≤ ξ1, ξ2 ≤ 1}.

Similarly Σ(Ke) = [TP (Ke)]2 or Σ(Ke) = [QP (Ke)]2. There is no requirement on global
continuity of the expansion. This is also true for the trace space Mh: a discrete variable
λ ∈Mh is multi-valued at every mesh vertex shared by multiple interior edges.

3.6 Global formulation for HDG problem

Given an element K ∈ Th and two functions u, v ∈ L2(Th), we define their L2 scalar product
by

(u, v)Th =
∑
K∈Th

(u, v)K , where (u, v)K =

∫
K

uv dx.

Similarly, the L2 product of functions u and v that are square-integrable on element traces
are defined by:

〈u, v〉∂Th =
∑
K∈Th

〈u, v〉∂K where 〈u, v〉∂K =

∫
∂K

uv ds

The DG method seeks an approximation pair (uDG, qDG) to u and q, respectively, in the
space Vh ×Σh. The solution is required to satisfy the weak form of (27) and (28)(

qDG,∇v
)
Th

= (f, v)Th +
〈
ne · q̃DG, v

〉
∂Th

(31)(
qDG,w

)
Th

= −
(
uDG,∇ ·w

)
Th

+
〈
ũDG,w · ne

〉
∂Th

(32)

D1.3: Final report on ExaFLOW algorithmic developments 37

for all (v,w) ∈ Vh(Ω)×Σh(Ω), where the numerical traces ũDG and q̃DG have to be suitably
defined in terms of the approximate solution (uDG, qDG). For details, we refer the reader
to [17]. This choice of trace variables allows us to construct the discrete HDG system
involving only trace degrees of freedom ũDG. Once ũ is known, the element-interior degrees
of freedom represented by both the primal variable u and gradient q can be reconstructed
from element-boundary values.

We note that the element-interior variable u restricted to element traces is not equal
to the hybrid variable ũ, but only approximates it: due to the definition of approximation
spaces Vh andMh, u must be continuous along element boundaries, while ũDG is allowed to
have jumps in element vertices.

3.7 Local solvers in the HDG method

Assume that the function
λ := ũDG ∈Mh, (33)

is given. Then the solution restricted to element Ke is a function ue, qe in P (Ke)×Σ(Ke)
that satisfies the following equations:

(qe,∇v)Ke = (f, v)Ke + 〈ne · q̃e, v〉∂Ke (34)

(qe,w)Ke = − (ue,∇ ·w)Ke + 〈λ,w · ne〉∂Ke , (35)

for all (v,w) ∈ P (Ke) ×Σ(Ke). For a unique solution of the above equations to exist, the
numerical trace of the flux must depend only on λ and on (ue, qe):

q̃e(x) = qe(x)− τ
(
ue(x)− λ(x)

)
ne on ∂Ke (36)

for some positive function τ . The analysis presented in [17] reveals that as long as τ > 0,
its value can be arbitrary without degrading the robustness of the solver. For the limiting
value of τ →∞, one obtains a statically condensed continuous Galerkin formulation. In this
sense, τ plays the role of a method selector as opposed to traditional penalty parameter used
in Nitsche’s method, for example.

3.8 Global problem for trace variable

We denote by (Uλ,Qλ) and by (Uf ,Qf) the solution to the local problem (34), (35) when
λ = 0 and f = 0, respectively. Due to the linearity of the original problem (26) and its
mixed form, the solution satisfies

(uHDG, qHDG) = (Uλ,Qλ) + (Uf ,Qf). (37)

In order to uniquely determine λ, we require that the boundary conditions be weakly satisfied
and the normal component of the numerical trace of the flux q̃ given by (36) is single valued,
rendering the numerical trace conservative.

D1.3: Final report on ExaFLOW algorithmic developments 38

We say that λ is the element of Mh such that

λ = Ph(gD) on ∂ΩD (38)

〈µ, q̃ · n〉∂T = 〈µ, gN〉∂ΩN
, (39)

for all µ ∈ M0
h such that µ = 0 on ∂ΩD. Here Ph denotes the L2-projection into the space

of restrictions to ∂ΩD of functions of Mh.
In the following, we consider ue(x), qe(x) = [q1, q2]T and λl(x) to be finite expansions in

terms of basis functions φej(x) for the expansions over elements and the basis ψlj(x) over the
traces of the form:

ue(x) =

Ne
u∑

j=1

φej(x)ûe[j] qek(x) =

Ne
q∑

j=1

φej(x)q̂e
k
[j] λl(x) =

N l
λ∑

j=1

ψlj(x)λ̂
l
[j]

3.9 Discrete form of HDG local solver

We now define several local matrices stemming from standard Galerkin formulation, where
scalar test functions ve are represented by φei (x), with i = 1, . . . , N e

u.

De
k[i, j] =

(
φei ,

∂φej
∂xk

)
Ke

Me[i, j] =
(
φei , φ

e
j

)
Ke

Ee
l [i, j] =

〈
φei , φ

e
j

〉
∂Ke

l

Ẽe
kl[i, j] =

〈
φei , φ

e
jn

e
k

〉
∂Ke

l

Fe
l [i, j] =

〈
φei , ψ

σ(e,l)
j

〉
∂Ke

l

F̃e
kl[i, j] =

〈
φei , ψ

σ(e,l)
j nek

〉
∂Ke

l

If the trace expansion matches the expansions used along the edge of the elemental expansion
and the local coordinates are aligned, that is ψ

σ(e,l)
i (s) = φk(i)(s) then Ee

l contains the same

entries as Fe
l and similarly Ẽe

kl contains the same entries as F̃e
kl.

Inserting the finite expansions of the trial functions into equations (34) and (35), and
using the definition of the flux (36) yields the matrix form of local solvers

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

[
Ẽe
kl

] q̂e
k

+

Ne
b∑

l=1

τ e,l
[
Ee
l û

e − Fe
l λ̂

σ(e,l)
]

= f e (40)

Meq̂e
k

= −(De
k)
T ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 1, 2 (41)

The global equation for λ can be obtained by discretizing the transmission condition (39).
We introduce local element-based and edge-based matrices

F
l,e

[i, j] =
〈
ψli, φ

e
j

〉
Γl

'
F
l,e

k [i, j] =
〈
ψli, φ

e
jn

e
k

〉
Γl

Ḡl[i, j] =
〈
ψli, ψ

l
j

〉
Γl

D1.3: Final report on ExaFLOW algorithmic developments 39

and define
gl
N

[i] =
〈
gn, ψ

l
i

〉
Γl

⋂
∂ΩN

.

The transmission condition in matrix form is then[
'
F
l,e

1

'
F
l,e

2

] q̂e
1

q̂e
2

+

[
'
F
l,f

1

'
F
l,f

2

] q̂f
1

q̂f
2

+ (τ e,i + τ f,j)Ḡlλ̂
l − τ e,iF̄l,eue − τ f,jF̄l,fuf = gl

N
,

where we are assuming that l = σ(e, i) = σ(f, j).

3.10 Continuous finite elements with weak Dirichlet boundary
conditions

With the standard HDG formulation now outlined, we investigate how this approach can
be applied to derive a weak Dirichlet boundary condition implementation for a continuous
Galerkin problem. Since the HDG local solver naturally imposes a weak boundary condition
on a single element, we choose to apply the HDG local solver to a single ‘macro element’ that
covers the whole domain tesselation Th. The term ‘macro element’ in this setting denotes
a conformal triangulation (as described in section 3.2) which supports a piecewise polynomial
expansion, as is generally common in Galerkin methods.

We start again from the weak mixed problem (34), (35), but integrate the second term
in the flux equation (35) by parts once again. This modified flux form allows for a sym-
metric boundary contribution to the linear system as will be explained shortly. In order to
distinguish between the standard HDG local solver within a single element and HDG ap-
plied to the whole domain tesselation Th, the superscript ‘e’ has been replaced by Th where
appropriate. The ’macro element’ form yields a system(

qTh ,∇v
)
Th

= (f, v)Th +
〈
nTh · q̃Th , v

〉
∂Tn

(42)(
qTh ,w

)
Th

=
(
∇uTh ,w

)
Th
−
〈
uTh ,w · nTh

〉
∂Th

+
〈
λ,w · nTh

〉
∂Th

(43)

The numerical approximation uTh belongs to the space V Thh and qTh lies in ΣThh , which are
defined as

V Th := {v ∈ C0(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th},
ΣTh := {w ∈ [L2(Ω)]2 : w|Ke ∈ Σ(Ke) ∀Ke ∈ Th}.

Using the definition of the trace flux

q̃Th(x) = qTh(x)− τ(uTh(x)− λ(x))nTh on ∂Th,

and the fact that the integral over Th can be written as a sum of integrals over all Ke ∈ Th,

D1.3: Final report on ExaFLOW algorithmic developments 40

equations (42) and (43) become∑
Ke∈Th

(∇v, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, ue〉∂Ke

−τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈v, λ〉∂Ke =
∑
Ke∈Th

(v, f)Ke (44)

∑
Ke∈Th

(w, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,w · ne〉∂Ke

−
∑
Ke∈Th

(w,∇ue)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈w · ne, λ〉∂Ke = 0 (45)

A continuous Galerkin solver with Dirichlet data prescribed by the variable λ can be obtained
by eliminating the flux variable from the system and reverting back to primal form for the
unknown u. The mass matrix which appears in the second equation of the local solver
after evaluating the dot product

(
qTh ,w

)
Th

is now block-diagonal as a consequence of the

discontinuous nature of the discrete flux qTh , hence the elimination of qTh from the system
can be performed element-wise. The matrix equivalent of (44), (45) written for a single
element Ke ∈ Th adjacent to Dirichlet boundary reads

∑
k=1,2

(De
k)
T −

Ne
b∑

l=1

Ẽe
kl

 q̂e
k

+

Ne
b∑

l=1

τ e,l
[
Ee
l û

e − Fe
l λ̂

σ(e,l)
]

= f e (46)

Meq̂e
k

=

(De
k)−

Ne
b∑

l=1

Ẽe
kl

 ûe +

Ne
b∑

l=1

F̃e
klλ̂

σ(e,l)
k = 1, 2 (47)

The discrete flux q̂e
k

expressed from (47) and substituted in equation (46) yields element-wise
contribution to the left- and right-hand side of the linear system which can be expressed as

∑
k=1,2

{
(De

k)
T
(
Me
)−1

De
k︸ ︷︷ ︸

1

−
(Ne

b∑
l=1

Ẽe
kl

)(
Me
)−1

De
k︸ ︷︷ ︸

2a

}
ûe

−
∑
k=1,2

{
(De

k)
T
(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)
︸ ︷︷ ︸

2b

+

(Ne
b∑

l=1

Ẽe
kl

)(
Me
)−1
(Ne

b∑
l=1

Ẽe
kl

)
︸ ︷︷ ︸

3

}
ûe +

Ne
b∑

l=1

τ (e,l)Ee
l û

e

︸ ︷︷ ︸
4

=f e +
∑
k=1,2

(Ne

b∑
l=1

Ẽe
kl − (De

k)
T

)(
Me
)−1
(Ne

b∑
l=1

F̃e
klλ̂

σ(e,l)
)+

Ne
b∑

l=1

τ (e,l)Fe
l λ̂

σ(e,l)

D1.3: Final report on ExaFLOW algorithmic developments 41

Term 1 on the left-hand side is a discrete Laplacian that arises from the standard continuous
Galerkin discretization, which would typically be accompanied by the forcing term f e on
the right hand side. This new expression therefore denotes a modification of the existing
matrix system and right hand side, which makes implementation relatively straightforward.
The matrix expressions 2a , 2b , 3 and 4 appear in the formulation only for elements Ke

containing at least one edge on Dirichlet boundary of Ω. In addition, expressions 3 and 4

are symmetric as a consequence of symmetry of Ẽe
kl,E

e
l and

(
Me
)−1

. The products 2a and

2b are transposes of each other, hence their sum is again symmetric. The modifications
to the symmetric discrete Laplacian therefore preserve symmetry of the discrete weak form,
meaning that efficient iterative solvers such as the conjugate gradient method can be used
to obtain solutions.

When the domain trace λ and forcing term f are both zero, the bilinear forms (44), (45)
yield a homogeneous linear system with a regular matrix. This can be shown by testing the
two forms with v = u and w = q:∑

Ke∈Th

(∇ue, qe)Ke −
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue,ne · qe〉∂Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

∑
Ke∈Th

(qe, qe)Ke +
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, qe · ne〉∂Ke −
∑
Ke∈Th

(qe,∇ue)Ke = 0

Their sum ∑
Ke∈Th

(qe, qe)Ke + τ
∑
Ke

∂Ke∩∂Th,D 6=∅

〈ue, ue〉∂Ke = 0

has a unique solution q = 0 and u = 0 provided τ > 0. This means that the CG system
with weakly imposed Dirichlet boundary conditions is uniquely solvable.

3.11 Results

In this section, we apply the weak Dirichlet boundary conditions to various elliptic problems.
We demonstrate that this technique preserves the expected convergence properties of high-
order methods, and then apply it to a standard fluid dynamics test case in order to showcase
its use in a more realistic application.

3.12 Convergence of continuous Galerkin solver with weak bound-
ary conditions

We first present a straightforward evaluation of the convergence properties of weakly imposed
Dirichlet boundary conditions on a scalar Helmholtz problem

∇2u− λu = f (48)

D1.3: Final report on ExaFLOW algorithmic developments 42

in a square domain (−1, 1)2 with λ = 1 and f(x, y) chosen so that the exact solution is of
the form

u(x, y) = sin(10πx) cos(10πy) + x+ y (49)

Two meshes were considered: a structured Cartesian grid and an unstructured mesh con-
sisting of triangles. Figure 17 compares the L2 error for polynomial orders varying between

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Figure 16: Meshes for Helmholtz convergence test.

1 and 20 when the Dirichlet boundary conditions are imposed strongly and weakly. The
behaviour of both strong and weak methods produces nearly identical errors up to p = 12
on the structured grid and p = 11 on triangles. With further increase of polynomial degree
of the basis, however, the weak errors fail to further decrease. The observed differences are
not surprising, because the HDG-based algorithm only penalizes the solution in order to
satisfy boundary conditions, while the strong implementation completely eliminates known
degrees of freedom and moves them to the right-hand side of the linear system, thus ful-
filling the boundary conditions exactly by construction. Furthermore, the stiffness matrix
with weak constraints is larger, hence less favourably conditioned and round-off errors in
the linear solver become important as the error values approach the limits of finite-precision
arithmetic on given machine.

D1.3: Final report on ExaFLOW algorithmic developments 43

0 5 10 15 20
Polynomial order

10−13

10−11

10−9

10−7

10−5

10−3

10−1

L
2

er
ro

r

Weak BC
Strong BC

(a) Convergence to exact solution, strong
vs. weak boundary conditions on triangular
mesh.

0 5 10 15 20
Polynomial order

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

L
2

er
ro

r

Weak BC
Strong BC

(b) Convergence to exact solution, strong vs.
weak boundary conditions on quadrilateral
mesh.

Figure 17: Convergence to the exact solution in L2 norm.

3.13 Comparison with classical penalty techniques

We conclude the paper with a brief comparison of our method against an existing tech-
nique for imposing weak boundary conditions. A classical penalty approach for boundary
conditions in finite element methods is due to Nitsche [58]. Consider a Poisson equation

−∇2u(x) = f(x) x in Ω

u(x) = gD(x) x ∈ ∂Ω,

Multiplying both sides of the equation by a test function v and adding a term 〈u− gD,∇v · n〉∂Ω

which should vanish for u satisfying the boundary condition yields

(∇u,∇v)Ω − 〈∇u · n, v〉∂Ω − 〈u− gD,∇v · n〉∂Ω = (f, v)Ω

A coercive bilinear form can be obtained by adding a penalty term τN 〈u− gD, v〉∂Ω which
should again be equal to zero for the exact solution. Nitsche’s method is therefore defined
as: find uh ∈ Vh such that

B(uh, v) = F(v) ∀v ∈ Vh, (50)

where

B(u, v) = (∇u,∇v)Ω − 〈v,∇u · n〉∂Ω − 〈u,∇v · n〉∂Ω + τN 〈u, v〉∂Ω ,

F(v) = (f, v)Ω − 〈g,∇v · n〉∂Ω + τN 〈g, v〉∂Ω

and
Vh := {v ∈ H1(Ω) : v|Ke ∈ P (Ke) ∀Ke ∈ Th}.

The main drawback of the above formulation is that the penalty parameter τN is problem-
dependent; estimates are discussed in more detail in papers [30] or [41].

D1.3: Final report on ExaFLOW algorithmic developments 44

To demonstrate the differences in behaviour of (50) and our method in a concrete setting,
we solve a two-dimensional Laplace problem with exact solution given by

u = sin(10πx) cos(10πy) + x+ y, (51)

i.e. the same exact solution as in Section 3.12. The numerical approximation was represented
by Lagrange finite elements with polynomial degree varying between 1 and 7 and we solved
the underlying linear system by a preconditioned conjugate gradient (PCG) method with
algebraic multigrid as preconditioner. Each computation was required to reach a relative
tolerance threshold of 10−9.

The results summarized in Table 2 show that the weak boundary algorithm has little
sensitivity to values of τ with respect to the obtained L2 errors. Large values of the penalty
parameter help reduce the number of PCG iterations by approximately 10%. Nitsche’s
method, on the other hand, yields larger variations in L2 errors when the penalty parameter
is changed, and this can be observed even for low orders. Too low values of τN initially lead
to larger errors and with increasing p eventually prevent the method from converging.

Value of τ in weak BCs Value of τN in Nitsche’s method

10−6 1 106 106 108

p NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2

1 17 3.15 · 10−1 17 3.15 · 10−1 15 3.29 · 10−1 15 4.18 · 10−1 14 4.15 · 10−1

2 23 4.51 · 10−2 23 4.51 · 10−2 21 4.66 · 10−2 22 5.42 · 10−2 20 5.25 · 10−2

3 35 2.90 · 10−3 35 2.89 · 10−3 31 2.47 · 10−3 32 8.68 · 10−3 29 5.06 · 10−3

4 49 6.34 · 10−4 49 6.34 · 10−4 46 6.39 · 10−4 47 1.17 · 10−2 42 6.79 · 10−4

5 66 1.45 · 10−4 66 1.45 · 10−4 61 1.54 · 10−4 – – 55 1.64 · 10−4

6 95 1.06 · 10−5 95 1.06 · 10−5 87 1.09 · 10−5 – – 79 5.04 · 10−5

7 141 2.08 · 10−6 141 2.08 · 10−6 128 2.19 · 10−6 – – 116 5.17 · 10−5

Table 2: Iterative convergence and L2 errors for different values of penalty parameters in
weak boundary conditions and Nitsche’s method. Missing entries in the table indicate cases
where Nitsche’s algorithm did not converge. NPMG represents the number of iterations in
preconditioned conjugate gradient solver using an algebraic multigrid solver as preconditioner
and ‖e‖L2 is the obtained L2 error norm.

The situation is different when an anisotropic mesh such as the one depicted in figure 18
is considered. Despite the fact that errors computed with weak boundary conditions are now
larger, the formulation remains stable and yields consistent results across a range of values
of τ .

Nitsche’s method, however, lacks in robustness in this case. Table 3b contains two dif-
ferent values of stabilization parameter τ for each polynomial order: the first is chosen as
the smallest power of 10 for which the method converged, the second is then equal to the

D1.3: Final report on ExaFLOW algorithmic developments 45

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.45 0.475 0.5 0.525 0.55

Figure 18: Anisotropic mesh of a unit square.

first multiplied by 105. This is to demonstrate that not even a significant increase of the
stabilization parameter helps reduce the error.

Value of τ in weak BCs

10−6 1 106

p NAMG ‖e‖L2 NAMG ‖e‖L2 NAMG ‖e‖L2

1 19 3.73 · 10−1 19 3.73 · 10−1 19 3.73 · 10−1

2 37 8.44 · 10−2 37 8.44 · 10−2 37 8.44 · 10−2

3 57 1.34 · 10−2 57 1.34 · 10−2 57 1.34 · 10−2

4 81 3.44 · 10−3 81 3.44 · 10−3 81 3.44 · 10−3

5 112 6.84 · 10−4 112 6.84 · 10−4 112 6.84 · 10−4

6 166 1.24 · 10−4 166 1.24 · 10−4 166 1.24 · 10−4

7 252 2.28 · 10−5 252 2.28 · 10−5 252 2.28 · 10−5

(a) Iterative convergence and L2 errors for different val-
ues of penalty parameters in weak boundary conditions on
anisotropic mesh.

p τN NAMG ‖e‖L2

1 1014 18 1102.71
1 1019 14 927.93
2 1015 30 22.76
2 1020 22 22.53
3 1015 47 55.57
3 1020 32 54.17
4 1015 64 3.05
4 1020 46 2.89
5 1016 90 1.53
5 1021 58 1.52

(b) Iterative convergence
and L2 errors for Nitsche’s
method on anisotropic mesh.

Table 3: Performance of Nitsche’s method and weak boundary conditions on anisotropic
mesh.

3.14 Navier-Stokes results

3.14.1 NACA6412

The incompressible flow past a NACA6412 airfoil was used to evaluate the performance of
weak boundary conditions when computing derived quantities such as aerodynamic forces.

D1.3: Final report on ExaFLOW algorithmic developments 46

The airfoil is placed in the flow with angle of attack α = 15◦ and the Reynolds number
based on chord length is Re = 500. No-slip condition on airfoil surface was imposed weakly,
while inlet values were prescribed using the classical strong algorithm. The simulation ran
for 20,000 time steps with ∆t = 5 × 10−3 using a velocity correction scheme implemented
in the open-source library Nektar++ [13]. The obtained flow field at t = 10 is plotted in
Figure 19 for both strong and weak boundary conditions.

We compared lift and drag computed on the same mesh using a modal expansion with
degrees 4 and 8 (Figure 20). In both cases, the forces computed with weak and strong
approach are in excellent agreement.

D1.3: Final report on ExaFLOW algorithmic developments 47

Figure 19: Viscous incompressible flow past NACA airfoil: velocity magnitude obtained
with strong Dirichlet boundary conditions imposed on the airfoil surface (top) and with
weak boundary conditions (bottom).

D1.3: Final report on ExaFLOW algorithmic developments 48

0 1 2 3 4 5 6 7 8 9 10
Time[s]

0.0

0.2

0.4

0.6

0.8

1.0

Li
ft

Weak BC P4

Strong BC P4

8 9 10
0.50
0.55
0.60
0.65
0.70

Detail t=[8,10] s

0 1 2 3 4 5 6 7 8 9 10
Time[s]

0.0

0.2

0.4

0.6

0.8

D
ra

g

Weak BC P4

Strong BC P4

8 9 10
0.00
0.05
0.10
0.15

Detail t=[8,10] s

0 1 2 3 4 5 6 7 8 9 10
Time[s]

0.0

0.2

0.4

0.6

0.8

1.0

Li
ft

Weak BC P8

Strong BC P8

8 9 10
0.50
0.55
0.60
0.65
0.70

Detail t=[8,10] s

0 1 2 3 4 5 6 7 8 9 10
Time[s]

0.0

0.2

0.4

0.6

0.8

D
ra

g

Weak BC P8

Strong BC P8

8 9 10
0.00
0.05
0.10
0.15

Detail t=[8,10] s

Figure 20: Viscous incompressible flow past NACA airfoil: drag and lift on P4 elements (top)
and P8 elements (bottom).

D1.3: Final report on ExaFLOW algorithmic developments 49

3.14.2 Unsteady flow past a turbine blade

This test case serves as means of comparing the performance of weak and strong Dirichlet
boundary conditions in turbulent flow. We considered the T106 turbine blade and a high-
order hybrid mesh consisting of triangles and quadrilaterals (Figure 21). The simulation

Figure 21: Turbine blade geometry: domain and leading edge detail

was initiated from a restart file containing flow field data that correspond to physical time
T = 24 and ran until T = 32s. The time step was ∆t = 2.5 × 10−5 and Reynolds number
Re = 50 000. The flow enters the domain with angle of incidence α = 37.7◦.

The configuration files for strong and weak boundary conditions only differed in the
definition of boundary treatment on blade wall: the former used standard Dirichlet boundary
condition algorithm, while the latter used weakly imposed boundary condition based on
a modified HDG algorithm. Any other boundary conditions prescribed in the symmetry and
inflow/outflow boundaries were identical.

An averaged flow field was saved every 5000 iterations. Figure 22 shows two of these
averaged fields. Both simulations produce nearly identical result, with weak boundary en-
forcement allowing for small nonzero values on blade wall.

Instantaneous velocity fields, however, differ more significantly. Figure 23 shows instan-
taneous velocity fields with strong and weak boundary conditions at 192 000 iterations.

In figure 24, we present the kinetic energy as function of time.

D1.3: Final report on ExaFLOW algorithmic developments 50

50000 iterations.

300000 iterations.

Figure 22: Averaged velocity field obtained with strong boundary conditions on blade wall
(left column) and weak boundary conditions (right column).

D1.3: Final report on ExaFLOW algorithmic developments 51

Figure 23: Instantaneous velocity field obtained with strong boundary conditions on blade
wall (left) and weak boundary conditions (right).

24 25 26 27 28 29 30 31 32
Time[s]

1.4

1.6

K
in

et
ic

E
ne

rg
y

Instantaneous energy

Strong BC
Weak BC

Figure 24: Kinetic energy vs. time.

D1.3: Final report on ExaFLOW algorithmic developments 52

3.15 Discretization of global transmission condition in the CG-
HDG algorithm

The previous section detailed the formulation and implementation of weak Dirichlet bound-
ary algorithm, which constitutes the second part of the algorithm. The first step, however,
requries the assembly of the global transmission condition (i.e. the CG-HDG equivalent of
equation (39)) and the solution of the corresponding linear system. Contrary to our initial
expectation, however, the performance analysis of this step indicates that it would be signif-
icantly slower that the classical HDG (or statically condensed CG) solver. For this reason,
we decided not to follow through with the complete implementation. More detailed analysis
pertaining to the performance of the CG-HDG algorithm can be found in deliverable D2.4.
We note, however, that the weak boundary condition formulation is useful as such as already
mentioned in the introduction.

4 Compression algorithms

A steady increase in computing power has enabled scientists and engineers to use progres-
sively more complex models to simulate a myriad of fluid-flow problems. As we approach
the end of Moores Law, however, a significant gain in performance can only be achieved by
an increase in core-count. Concurrently with higher levels of parallelism, the overall effi-
ciency of modern high-performance systems is reduced by an ever widening I/O bottleneck.
Developing I/O strategies that can decrease the data footprint of numerical simulations is
therefore of paramount importance.

Since effective data storage is a pervasive IT problem, much effort has already been ex-
pended on developing and refining compression schemes for various applications. Prominent
algorithms that allow for the lossy compression of structured data-sets can be found in the
world of entertainment technology. In this context, Schmalzl, Loddoch[51] and Lindstrom[50]
have extended the Joint Photographic Experts Group (JPEG) standard for volumetric
floating-point arrays. These compression algorithms are simple and efficient in exploiting
the low-frequency nature of most numerical simulations. The non-local basis functions of
the discrete cosine transform, however, will result in a heavily distorted data-set [1].

In contrast to the base-line JPEG standard, JPEG 2000 (JP2) employs a lifting-based
one-dimensional discrete wavelet transform (DWT) that can be performed by either the
reversible LeGall-5/3-Wavelet (5/3-CDF-Wavelet) for lossless or the non-reversible Cohen-
Daubechies-Feauveau-9/7-Wavelet (9/7-CDF-Wavelet) filter for lossy coding [19]. The re-
sulting time-freqeuncy representation facilitates random access as well as region-dependent
rate-distortion-control operations, reducing the introduction of large-scale artifacts during a
lossy compression stage. Furthermore, the JP2 standard offers an embedded block-coding
algorithm that generates a quality- and resolution-scalable bit-stream which is optimally
truncated with regards to the induced distortion [1].

Efforts have already been made to adapt the full range of JP2 features to floating-point
numbers. Usevitch [71] proposed an extended integer representation of single precision IEEE

D1.3: Final report on ExaFLOW algorithmic developments 53

754 floating-point numbers which stores the 24 consecutive mantissa bits losslessly using 278
bit locations. While this approach requires little alteration of the base code, the extended
integer representation results in a significant increase in memory consumption and overall
decrease in compression performance. Gamito [32], on the other hand, split the floating-point
values into their sign, bit and mantissa fields. The so-called shape-adaptive discrete wavelet
transform is then applied inside the smooth regions of the exponent and mantissa fields
to avoid high-frequency information that is introduced during the splitting operation. The
increase in computational complexity the shape-adaptive wavelet transform incurs, however,
limits the usefulness of this approach for large-scale CFD simulations.

Since Lindstrom [50] demonstrated that lossy compression of numerical data-sets is not
only possible but also necessary to achieve high compression ratios, we chose to develop a
lossy encoder based on the JPEG 2000 standard. Our goal was to develop an algorithm
that is able to conserve most of the internal energy of the fluid domain and minimize the
introduction of compression artifacts to support both visual and statistical evaluation. To
allow for easier storage, the compressed bit-stream was required to embed all the informa-
tion needed to decompress the simulation file. The resulting wavelet based compression
algorithm (WBC), as described in deliverable 1.2, can efficiently compress a wide variety of
CFD problems without sacrificing crucial flow-field information. We here give a brief sum-
mary of the work that has been done for deliverable 1.2 and highlight the improvements to
the compression code that have been implemented since then (see subsubsection 4.1.1).

In subsection 4.2, we will evaluate the existing mathematics method, called singular value
decomposition (SVD), and emerging new ideas. Special attention will be paid to algorithm
that identify, extract and preserve physical structures in the flow field for instance. This
alone has the potential of reducing the initial “raw” data by more than an order of magni-
tude. SVD has already been surveyed during this project.

To allow for a quantitative and qualitative evaluation of our data-compression strategies,
the following parameters were selected. The most popular metrics used to measure the
performance of a data compression algorithm is the compression size. It is defined as the
ratio of the number of bits used to represent the original to the number of bits used to
represent the compressed bit-stream:

CR =
Uncompressed Size

Compressed Size
. (52)

With regards to the SVD algorithm, the compression ratio can be rewritten as

CR =
m× n

m× r + r + r × n =
m× n

r × (m+ 1 + n)
, (53)

where m and n define the rows and columns of the original matrix and r the rank of its
approximation. The goal of the singular-value decomposition is to reduce the storage required
for the compressed data-stream when compared to the original data-set. Therefore, the limit

D1.3: Final report on ExaFLOW algorithmic developments 54

on the value of rank r is given by:

r <
m× n

m+ 1 + n
. (54)

where r defines an integer value. From this follows that a reduction in rank r will result
in an increase in compression ratio and a decrease in the flow field reconstruction quality.
This implies smaller ranked SVD approximations are preferable as long as the compression
induced distortion remains minimal.

To assess the overall quality of the decompressed files we used the mean-squared error
(MSE) and peak signal-to-noise ratio (PSNR) metric. The mean squared error is defined as
the average square of the difference between the original matrix I and its approximation I ′:

MSE =
1

ijk

i∑
x=1

j∑
y=1

k∑
z=1

|I(x, y, z)− I ′(x, y, z)|2, (55)

where i, j, k represent the row, column and slice of a three-dimensional matrix. The compres-
sion induced distortion between the original and reconstructed data is measured using the
peak signal-to-noise ratio. It can be defined as the ratio of maximum signal to the corrupting
noise power. PSNR is usually expressed in terms of the logarithmic decibel scale (dB) and
is most easily defined via the MSE:

PSNR = 20 log10

(
max(I(x, x, z))−min(I(x, x, z))√

MSE

)
, (56)

Typically, a PSNR of 35 dB or higher is a good indicator for a well reconstructed data-set
[34]. In our own investigation we found that a PSNR of 50 dB or higher is needed for the
evaluation of turbulence statistics.

We note that the sections below serve to summarise some of the main development efforts
made within the ExaFLOW project. A full description of the mathematical formulation can
be seen in the previous deliverable D1.2, and a more thorough investigation of the initial
implementation of these methods can be seen in D2.4.

4.1 JPEG 2000

4.1.1 Theory

The fundamental structure of our wavelet-based compressor is shown in Figure 25. Since
it has been adapted from the integer based JP2 standard, our first course of action was
to transform the volumetric floating-point into an integer array. This was accomplished by
using the fixed-point number format Q. To this end, the dynamic range of each flow-field
variable is first centered around zero. This is done to reduce the number of significant bits
needed to represent the data samples and exploit the full range of the number format Q.

D1.3: Final report on ExaFLOW algorithmic developments 55

Floating
Point Array

Integer
Array

Wavelet
Coefficients

Compressed
Datastream

Compressor

01101...H
H

H
2

H
H

H
2

HLL2HLL2

LHL2LHL2 HHL2HHL2

LLL0LLL0 HLL1HLL1

LHL1LHL1 HHL1HHL1

LLH2LLH2 HLH2HLH2
LLH1LLH1 HLH1HLH1

W EQ

Figure 25: Structure of wavelet-based compression algorithm for volumetric floating-point
arrays. Encircled letters indicate the floating-point to fixed-point transform (Q), discrete
wavelet transform (W) and entropy encoding stage (E).

Next, all values are normalized to the range (-1, +1) and then multiplied by the number of
fractional bits Qm. In this context, Qm can be used as a primary rate control parameter
by decreasing the information entropy of the volumetric floating point array. On the other
hand, the number of fractional bits should not exceed the width of the integer type used to
store the fixed-point values. For our purpose, we use Qm = 28 to prevent an integer overflow
during the subsequent DWT stage and to allow for a fast compression scheme.

The next step was to generate a time-frequency representation of the transformed data
samples. Here, the discrete wavelet transform is applied to the volumetric integer field to
decorrelate its inherent spatial frequency information. The discrete wavelet transform imple-
mented in our compression algorithm is the 9-tab/7-tab real-to-real filter bank, commonly
known as the 9/7-CDF-Wavelet. The 9/7-filter bank is split into two predictor (high-band)
and two update (low-band) operations, followed by a dual normalization step:

y(2n+ 1)← x(2n+ 1) + (α× |x(2n) + x(2n+ 2)|),
y(2n) ← x(2n) + (β × |y(2n− 1) + y(2n+ 1)|),
y(2n+ 1)← y(2n+ 1) + (γ × |y(2n) + y(2n+ 2)|),
y(2n) ← y(2n) + (δ × |y(2n− 1) + y(2n+ 1)|), (57)

y(2n+ 1)← −K × y(2n+ 1),

y(2n) ← (1/K)× y(2n).

Here, α = −1.59 and γ = 0.88 are the coefficients for the first and second predictor stage.
The coefficients β = −0.053 and δ = 0.44 define the first and second update stage. The dual
normalization step is described by the coefficient K = 1.23 [60]. Since the discrete-wavelet-
transform is a one-dimensional transformation defined for unbounded signals, we can extend
the transformation stage to volumetric data-sets by applying the analysis filter-bank along
each spatial dimension successively. For bounded data-sets, the undefined samples outside
of the finite-length signal need to be related to values inside the signal segment. For odd-

D1.3: Final report on ExaFLOW algorithmic developments 56

C
od

e-
bl

oc
k

H
ei

gh
t

Code-block Width

S
tr

ip
e

S
tr

ip
e

HL2

LH2 HH2

LL0 HL1

LH1 HH1

MSB

LSB

Figure 26: 2-dimensional representation of geometric operations performed during Embedded
Block Coding with Optimized Truncation stage. Red squares signal a precinct, blue squares
a code-block.

length filter taps, this is achieved by applying a whole-point symmetric extend on the signal
boundaries [19].

Finally, each wavelet sub-band is independently encoded using the Embedded Block Cod-
ing with Optimized Truncation (EBCOT) algorithm described in the JPEG 2000 standard.
First, the wavelet coefficients are rounded down to the nearest integer. Next, each sub-band
is subdivided into non-overlapping cubes (see Figure 26). For every wavelet level, spatially
related rectangles from the 7 high-bands form a precinct. Each precinct is further divided
into 32×32×32 sized code-blocks, which form the input signal of the entropy encoding stage.
These code-blocks are then split into their bit-plane fields. The bit-planes are scanned in
a zigzag pattern, starting from the most significant bit-plane (MSB) to the least significant
bit-plane (LSB). Each bit-plane is encoded using three distinct coding passes: The signifi-
cant propagation, refinement and cleanup pass. During these coding operations, every bit of
a bit-plane is only encoded once in one of the three coding passes. The sign bit is encoding
once a coefficient becomes significant for the first time. In a post-processing operation, the
encoded bit-stream is subdivided into so-called quality layers. These quality layers represent
optimized bit-stream truncation points that minimize the distortion for a specific bit-rate.
Each successive quality layer will monotonically improve the quality of the data-set recon-
struction. The encoded information for each code-block is distributed across all layers. Rate
control is handled by defining quality layer 0 to be rate-distortion optimized for the specified
compression ratio.

4.2 Singular Value Decomposition

SVD is one of the most useful tools in matrix algebra and includes the concept of the
eigenvalue/eigenvector decomposition and is as a technique offering adequate approximations
to represent fluid flows with reduced data/dimension.

We start with the definition of SVD. The SVD allows an exact representation of any
m× n data matrix A with rank r (r = min(m,n)) in the following form [23]

A = UΣV T ,Σ = diag(σ1, σ2, . . . , σr), (58)

D1.3: Final report on ExaFLOW algorithmic developments 57

where the columns of U and V are orthonormal with UTU = I = V TV . Σ is a diagonal
matrix of non-negative numbers σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0, arranged in descending order. An
equivalent way of writing is:

A =

min(m,n)∑
r=1

urσrv
T
r . (59)

We can also find the fundamental theorem of SVD (with m > n) as shown in Figure 27
. The vectors ur of the orthonormal U , called the left singular vectors, are the eigenvectors
of AAT with the associated eigenvalues σr. The vectors vr of the orthonormal V , called the
right singular vectors, are the eigenvectors of ATA with the same associated eigenvalues σr.

Figure 27: The form of Singular Value Decomposition

Using SVD, low-dimensional matrices may be used to represent a high-dimensional ma-
trix. It makes easy to eliminate the less important parts of the representation to produce an
approximation with any desired number of dimension, i.e. rank r. Obviously the fewer the
dimensions are chosen, the less accurate will be the approximation[48]. The approximation
is given by:

A =

min(m,n)∑
r=1

urσrv
T
r ≈

r∑
r=1

urσrv
T
r = Ar, (60)

where Ar is the approximated matrix by using SVD. The low-dimension approximation of
matrix A is illustrated in Figure 28. The product of low-dimension representations Ur, Σr

and Vr equals the approximated matrix Ar.
The purpose of applying SVD is to replace a larger original matrix by three other ma-

trices whose sizes are much smaller than the original, but from which the original can be
approximately reconstructed, usually by taking their product.

5 Fault tolerance

Algorithm and software resilience is now one of the greatest concerns in striving towards
exascale and interruption, due to component failure, is now considered a major barrier to

D1.3: Final report on ExaFLOW algorithmic developments 58

Figure 28: Data reduction with Singular Value Decomposition

effectively using an exascale system with current numerical codes [15, 68]. Both hardware
and software errors, such as component failures or operating system crashes, may interrupt
simulations or lead to non-deterministic results [65]. This is further exacerbated by the
trend towards heterogeneous computing where nodes are composed of multiple processing
components and additional system-level software layers. Failures typically necessitate a
restart of the computation and results in wasted time, energy and resources. Even with
the use of high-quality hardware, the number of components necessary to reach this level of
throughput leads to an overall system failure rate of once every few hours.

In this section, we consider two approaches to implementing fault tolerant algorithms
for fluid dynamics applications. The first, in section 5.1, considers a minimally intrusive
approach to existing fluid dynamics solvers, building upon user-level failure mitigation ex-
tensions to the MPI library. In deliverable D2.4, a new C++/MPI library for fault-tolerance
using checkpoints and automatic rollback is presented. The library, called Llama, uses multi-
level layered group-local in-memory checksums to protect distributed arrays. Checksum en-
coding schemes are widely used to protect data from hardware failures. Data protected
through the creation of checksum parity code is, however, only recoverable if the number of
lost data and/or code blocks is smaller than the number of checksums parity codes created.
In section 5.2, a newly developed method for partial information recovery in incomplete
checksums is presented.

5.1 Minimally intrusive resiliance for transient solvers

A number of techniques already exist to improve the resilience of application codes in the
event of system degradation or failure, including checkpoint/restart, redundant computing
and application-based resilience. These methods can be classified as either forward recovery
or backward recovery. In the former, the algorithm continues and corrects errors introduced
by failures. Examples of this include redundant computing or some algorithm-specific ap-
proaches. Forward-correcting algorithms exist for some sub-components of the transient
solvers considered, such as conjugate gradient solvers [2], but these approaches do not typ-
ically provide a comprehensive solution in the case of an error occurring outside of these
components. Furthermore, they require a significant intrusion into the application code. In

D1.3: Final report on ExaFLOW algorithmic developments 59

contrast, backward-recovery rolls back to the last previously recorded globally consistent
state and repeats calculations. Without the addition of resilience, the failure of a single MPI
process would typically lead to the termination of the entire simulation, requiring a complete
restart and backward-recovery from the last checkpoint.

Existing approaches to incorporating resilience in scientific codes involve substantial mod-
ifications to the application code in order to add protection mechanisms to all the necessary
data structures and, in some cases, may require a complete redesign. Many of the demon-
strators of these approaches are stencil applications, written specifically for illustrating the
resilience algorithm and are not necessarily representative of production codes.

In the event of a process failure (e.g. due to a hardware fault) we would like to avoid the
complete restart of the simulation on all processes, avoid checkpointing to disk and instead
substitute the failed process with a spare process which recovers from data provided by a
surviving process in order to continue the calculation. User-Level Failure Mitigation (ULFM)
[8, 9] is a proposed extension to the MPI 4.0 standard which adds fault tolerance semantics
for application-based recovery. ULFM provides three key additions to the MPI API. The
MPIX Comm revoke method invalidates a communicator and allows a process to notify other
processes that a failure has occurred, for example to initiate recovery. The MPIX Comm shrink

method then reconstructs a revoked communicator containing failed processes into a working
communicator with those failed processes omitted. Finally, MPIX Comm agree implements an
agreement algorithm, performing a logical AND operation on the boolean parameter across
processes; this succeeds even if there are failed processes.

Here, we instead outline our low-intrusion application-based resilience approach, build-
ing on ULFM, specifically for tightly-coupled transient solvers. We illustrate our strat-
egy through a prototype implementation in Nektar++, a production-ready high-order spec-
tral/hp element framework for the solution of a wide range of partial differential equations
[13], which is described further in deliverable D2.4.

Full details of the algorithm and performance analysis have been published [14].

5.1.1 State Protection

The resilience approach we describe here is independent of the particular numerical discreti-
sation used (finite difference, element, volume, etc), time-integration scheme and the specific
time-dependent PDE to be solved. In general, the implementation fo solvers for PDEs can
be broken down into two distinct phases. The first is a set-up phase in which the necessary
discrete operators or stencils are constructed. These are typically in the form of matrices
which remain fixed throughout the simulation. The cumulative storage of such operators is
often large, compared to solution vectors, and their construction requires global communi-
cation in order to associate neighbouring degrees of freedom across partitions. The second
phase is the time-advancement of the initial conditions to the final state. The value of the
solution variables change during time integration but the discrete operators do not.

To leverage the capabilities of ULFM, we provide a custom error handler on all communi-
cators, rather than allowing MPI to automatically defer to calling MPI Abort when a failure
occurs. Execution of the application proceeds as normal but with a number of additional

D1.3: Final report on ExaFLOW algorithmic developments 60

Application

Resilience

MPI

Application

Resilience

MPI

Static init

Record Comm

Proc A

Proc B Static init

Record Comm

Step ...

...

Step

Step Step

Static
backup

Dynamic
backup

Application

Resilience

MPI

Spare

Wait

rank

rank

rank

Figure 29: Diagrammatic representation of the protection algorithm. Initialisation of solver,
showing three processes – two active and one spare – with ranks i, j, and N , respectively.
Rank i communicates static recovery data to rank j. After a number of steps, at time tC0 , a
remote in-memory checkpoint occurs. The spare rank, N remains idle throughout. Red MPI
regions denote collective communication, while green regions denote pairwise communication.

ranks allocated. The set of all processes are partitioned into worker and spare ranks imme-
diately after MPI is initialised using MPI Comm split. This creates a sub-communicator in
which the worker processes participate. Spare processes are assigned to a null communicator
and wait until a failure occurs. They should proceed only on two events: a failure occurring,
or; the application terminating normally in which case MPI Finalise must be called. To
achieve this on spare processes we call MPI Comm agree with a value of true immediately af-
ter MPI Init. On worker threads, the same call is made immediately prior to MPI Finalise

with a value of true or, in the event of an error being detected, from the error handler with a
value of false. Therefore, if the resulting conjugation evaluates to true, the application code
must have completed successfully. If it evaluates to false, this implies a process has failed,
identifying that recovery is required.

In order to enable recovery on a replacement MPI process, the data structures within the
code must be protected in a way which allows their reconstruction on a spare process. State
protection is depicted diagrammatically in Fig. 29. In our approach, rather than writing
to disk, we opt for remote in-memory check-pointing. Data on each process is backed up
to a partner process which requires only pairwise communication and is denoted by green
blocks in Fig. 29. This ’buddy’ process is chosen to balance resilience and performance and
is typically on an adjacent node.

We do not store the initialised static data structures themselves, but rather the outcome
of any MPI communications performed by the application during the static phase, indicated
by Record Comm in Fig. 29. This can be achieved by intercepting calls to the MPI API and

D1.3: Final report on ExaFLOW algorithmic developments 61

logging the result, if applicable. This provides two key advantages: the volume of data is
anticipated to be smaller than the fully initialised data structures whose generation invoked
the communication, since exchanges occur along partition boundaries rather than within the
partition volume, and; very little modification is required to the existing application code.
To complete this aspect, we must annotate the code (through function calls) to mark the
beginning and end of the initialisation phase.

Dynamic data checkpointing is performed at regular intervals after the end of the initiali-
sation phase. These data typically consist of the solution vectors at the time of checkpointing
only and are relatively small in size compared to static data. These are protected through
duplication to the memory of a partner node.

5.1.2 State Recovery

The first task is to modify the behaviour of the MPI routines in the event of a failure. We
specify our own error handler function to be called by MPI in the event that any process
detects another process has failed through any communicator. The primary role of this
handler is: to revoke the communicator, thereby ensuring all other processes become aware
of the failure, and; to throw an exception which propagates up the call tree to a suitable
point in the application code in which backward-recovery can be managed. For transient
simulation codes, this is typically the outer time-integration loop.

The second task is to enrol spare processes to replace those which have failed and re-
building all communicators used in the application code. A call to MPI Comm agree unlocks
the spare processes (see above) so they can participate in the enrolling process. The set
of all processes is then shrunk to omit those which have failed, MPI group operations are
used to determine the failed ranks, and spare processes are reassigned the ranks of the failed
processes using MPI Group translate ranks. A complete set of worker processes is then se-
lected using MPI Comm split and any other sub-communicators are similarly reconstructed.

The application must now achieve a globally consistent state on all processes. Surviv-
ing processes simply rollback their dynamic data to the last in-memory checkpoint. Spare
processes must recover both the static and dynamic data. This aspect of the algorithm is
shown in Fig. 30.

A prototype implementation of the algorithm has been developed in Nektar++. We de-
scribe the implementation of this algorithm and analyse its performance in the work package
2 deliverable 2.4.

5.2 Partial Information Recovery with Incomplete Checksums

Hardware is inherently failure prone. For data centers and cloud services, protecting user
data has been essential for as long as the services have existed. In early days, the standard
approach was protection through triple redundancy. At any given moment, three separate
hard drives on separate systems would store any given data[54, 36]. If at some point, a drive
would fail, the two remaining hard-drives are to make a new copy by sending their data
over the network to a new failure-free machine. The process of copying the full content of a

D1.3: Final report on ExaFLOW algorithmic developments 62

Application

Resilience

MPI

Application

Resilience

MPI

Static init

Reply Comm

Step ...

...

Step

Step Step

Application

Resilience

MPI Wait

Step

Step

Enrol

Enrol

Wait

Restore

Rollback

Roll-forward

Proc A

Proc B

Spare

rank

rank

rank

Spare

rank

Failure

Failure Detected

Figure 30: Diagrammatic representation of the recovery algorithm. Process A with rank i
fails and, after enrolment and rank translation during recovery, process S is assigned rank i
and receives recovery data from rank j. Static and dynamic data is subsequently recovered to
the last checkpoint at time tCk without requiring any further communication with surviving
ranks. The simulation then continues. Red MPI regions denote collective communication,
while green regions denote pairwise communication.

D1.3: Final report on ExaFLOW algorithmic developments 63

hard-drive over network fabric might take an hour or so, depending on the state of network
congestion.

With triple redundancy, three hard-drives on separate systems would have to all fail
within the span of roughly an hour for the data to be lost. Consumer grade hard disk drives
(HDD) have an annualized failure rate of 2 to 5 percent when running 24 hours a day, 365
days a year[64]. With these ballpark numbers, the probability of loosing one hard-drive
worth of data within a year is in the order of ∼ 10−15. Thus, even with a very large number
of hard-drives, the probably of loosing data becomes small. Newer Solid State Drives (SSD)
are unlikely to lessen the need for failure protection techniques meaningfully. Studies have
shown that they have lower annual replacement rate of 1-3 percent, but in turn they have a
higher rate of uncorrectable data errors [66]. The problem with the approach of redundancy
for protecting data is that it is very expensive. The main cost of running a data-center is
due to energy consumption and hardware purchase. Triple redundancy essentially triples
the cost of running the service.

For said reasons, the industry no longer rely solely on redundancy as a mean of fault-
tolerance. Instead, erasure codes have found use. Erasure codes are a form of forward error
correction that take data consisting of k symbols and turn it into a larger data set with
n symbols such that the original data may be recovered from a subset of the n symbols.
Erasure codes for which any k symbols are sufficient to recover the original data are called
optimal, these codes are as resilient as possible, but typically scale quadratic in terms of
coding and decoding complexity with respect to n. The n − k extra symbols created are
typically referred to as parity codes or checksums. The most commonly used erasure code
is ReedSolomon error correction[61], used in RAID6 and in various storage services.

The advantage of using Reed-Solomon erasure code instead of redundancy is that it
is relatively memory efficient. Imagine three hard-drives full of data that one would like
to protect, i.e. k = 3, say another three hard-drives are used to store parity code, i.e.
n = 6. We’d have to lose four drives among the six, before the data on the lost hard-drives
become truly lost. This comes at the cost of a 100 percent overheard in hard-drive usage.
Compare this to the triple-redundancy approach, here nine hard-drives would be required
corresponding to a 200 percent overheard, this despite the two approaches having essentially
the same probability of data-loss. The Reed-Solomon approach is thus very efficient in terms
of disk-usage. The trade-off is that Reed-Solmon requires encoding and decoding of data,
which increase both CPU usage and network congestion. In practice, major data-centers are
typically using various forms of hierarchies of parity codes, in combination with redundancy
techniques, to mitigate issues of network congestion in particular[35, 62, 59].

The use of erasure code is beginning to find its way into HPC as well. In the context
of fault-tolerance, the interest is to protect data in-memory to avoid the comparatively slow
parallel-file-system; this makes the memory conserving property very attractive. In addition,
most clusters used for large-scale applications are equipped with high-bandwidth low-latency
networks, which serves to somewhat alleviate the cost of encoding data. In the Llama library
(see deliverable D2.4), erasure codes were used for this exact purpose to enable a library for
fault-tolerance to create memory-conserving in-memory checkpoints.

D1.3: Final report on ExaFLOW algorithmic developments 64

Unfortunately Reed-Solomon too has limits, even optimal erasure codes can not recreate
lost data if the number of lost hard-drives, or nodes, kl is greater than n − k. Up until
this point, all data lost can be recreated with bit-wise accuracy, but after, there’s no known
way of recreating the lost data. This is unfortunate. In the context of HPC fault-tolerance
through light-weight checkpointing, as demonstrated in D2.4, this means one must revert to
a more resilient checkpoint such as one written to the parallel-file-system. In the context
of data-centers and cloud services protecting costumer data, it is unfortunate because they
are forced to use sufficiently many resources to ensure that the probability of this situation
happening is infinitely small.

The decoding procedure can be thought of, in very simple terms, as the procedure of
solving a linear system. In order to recover lost data, one must solve a system for which
the number of columns is the number of lost symbols kl, while the number of rows is the
number of parity code symbols n− k. The reason that it becomes impossible to recover the
data when n− k < kl is that the system to solve become under-determined. If real numbers
were used in the encoding scheme, infinitely many solutions to the decoding procedure would
exist. If, as in the case of Reed-Solomon, the encoding matrix and symbols to encode str in
a Galois field, the number of possible solutions would still be finite, but there would be no
unique solution.

Despite the fact that no unique solution exists to the decoding problem when n−k < kl,
one could argue that the remaining equations still hold information about the structure of the
lost data. Even though the number of possible solutions is infinite, the number of solutions
not admissible is likewise infinite. One might speculate that given some other knowledge
about the data that was decoded, say knowledge of how one element in a vector tends to
relate to another, could this information be used to impose other conditions in such a way
that the system to solve yet again become well posed? In this section we present a study
demonstrating a proof-of-concept. For reasons of simplicity, we consider an erasure code in
the style of Reed-Solomon, but on real numbers.

5.2.1 The Weighted Checksum Scheme

Since real numbers can only be represented with finite precision on computers, most erasure
codes such as Reed-Solomon, are designed to be applied to data represented as elements in a
Galois field so that bitwise exact recovery is possible, thereby allowing the encoding/decoding
mechanism to be agnostic with respect to what the bits represent.

In HPC fault-tolerance applications, some form of numerical data is often what needs to
be protected. A vector, or matrix, filled with real numbers. This data could be treated as
bit-streams using Reed-Solomon encoding, but parity codes could also be generated directly
from the floating point numbers. In [46] the authors list a number of advantages in doing so.
A main argument is that one avoids the trouble of introducing Galois Field arithmetic in the
encoding and decoding procedure, instead being able to rely on standard matrix operations
for floating point numbers. The disadvantage is the introduction of round-off errors during
the recovery procedure due to the limited precision with which floating point numbers may
be represented. The latter may however be of limited concern since it has been shown that

D1.3: Final report on ExaFLOW algorithmic developments 65

the loss of accuracy can be limited with a clever choice of checksum encoding matrix [16, 46].
In the introduction below, we use k to indicate the number of separately stored data, m

to indicate the number of parity codes to compute, i.e. checksums, and n = m+ k the total
number of data and code blocks. In the context of the example given in the previous section,
this corresponds to a total of n hard-drives, among which k separate hard-drives are used to
store the data that must be protected, and m hard-drives are used to store checksum parity
code.

Consider a vector x̄ of length d times k. Let’s assume that this vector is partially stored in
k equal parts on k independent hard-drives. Then the “sub-vector” stored on each hard-drive
contain d elements. For ease of notation, let x̄i denote the i’th sub-vector. A simple way of
protecting the content of the vector against hardware failures is to compute an element-wise
sum, i.e. a new vector c̄, also containing d elements,

c̄ =
k∑
i=1

x̄i (61)

and then storing c̄ on a separate hard-drive, M = 1. We will refer to the vector c̄ as the
checksum hence forward. If at some point we were to lose a hard-drive kl ∈ {1, k}. No
matter which one it is, the vector c̄ can be used to recover the data through a summation
on the form

x̄kl = c̄−
k∑

i 6=kl

x̄i (62)

The above approach is extendable to create a simple scheme for protection against multiple
failures, called a weighted checksum scheme. Suppose that we can afford to store m checksum
vectors on m separate hard-drives, we would then compute each checksum vector c̄i as such

a1,1x̄
1 + . . .+ a1,kx̄

k = c̄1

...

am,1x̄
1 + . . .+ am,kx̄

k = c̄m

(63)

where am,k are some weights to be chosen. The matrix A = (ai,j)m,k is called the checksum
matrix. If multiple hard-drives fail, how could the data be recovered? Assume, without loss of
generality, that all of the first klost hard-drives have failed, and the all subsequent hard-drives
have survived, we may then derive an equation to recover the sub-vectors x̄1, x̄2 . . . , x̄klost lost
by restructuring (63) to arrive at

a1,1x̄
1 + . . .+ a1,klostx̄

klost = c̄1 −∑k
t=kl+1 a1,tx̄

t

...

am,1x̄
1 + . . .+ am,klostx̄

klost = c̄m −∑k
t=kl+1 am,tx̄

t

(64)

We refer to the coefficient matrix of the left hand side matrix in the above linear system,
consisting of klost columns of A, as Ar. For recovery to always be possible, the coefficients

D1.3: Final report on ExaFLOW algorithmic developments 66

of the weighted checksum matrix A must be chosen in such a way that for any possible
Ar, a unique solution is guaranteed to exist. I.e., the elements in the checkpoint matrix
A must be chosen so that any sub-matrix of A is non-singular as this guarantees that Ar
will always have full rank. Many structured matrices such as Vandermonde matrix, Cauchy
matrix, and Gaussian Random matrix satisfy this condition. Not all such matrices would
necessarily be suited though, it is also important that any sub-matrix Ar is well conditioned.
If Ar has a high condition number, round off errors will accumulate and reduce the accuracy
of the recovered data[5]. Gaussian Random matrices are both well conditioned and satisfy
the condition that any submatrix is non-singular[21]. They are therefore a natural choice
as noted in [46], and will be used as the checksum matrix for all numerical experiments
presented in this section.

5.2.2 Partial information recovery for incomplete checksums

The unfortunate limitation of the approach, as with all erasure codes, is that if the number of
hard-drives lost klost is larger than the number of checksums m, there is no unique solution to
the problem of recovering the lost sub-vectors x̄1, x̄2 . . . , x̄klost since the system (64) becomes
under-determined. Of course, one could simply let m be very large to avoid that situation,
but increasing m means increasing the overhead in terms of hardware and energy. Ideally,
we’d like to keep the overhead due to data protection as low as possible. Therefore, it would
be immensely practical if we could somehow magically find the right x̄1, x̄2 . . . , x̄klost among
the infinite number of solutions to the under-determined system (64) when m < klost.

To appreciate how that might be possible, let’s take a step back and consider again the
case of having only a single checksum vector. If we are so unfortunate to lose klost > 1 number
of hard-drives, the solution space of every element d in each lost sub-vector x̄1, x̄2 . . . , x̄klost

is spanned by an klost − 1 dimensional affine hyperplane as can be deduced from (63). The
solution space is infinitely large, so we can not naively recover the lost sub-vectors by di-
rect computations. Here’s an idea though, let’s assume that the data vector x̄ stored in a
distributed manor on many hard-drives has some structure to it, and that we have some
knowledge of what that structure is. Say, we might be informed that the content of the
vector x̄ represents points sampled from a C∞ functional. Now, given this knowledge, what
if, among the infinitely many solutions to (63), for each element dd in each of the lost data
vectors x̄1, x̄2 . . . , x̄klost , we choose the solution which makes, in some yet to be defined sense,
the function that x̄ represents as smooth as possible?

The essence of the approach is simple. Let ˙̄x represents the first order derivative of x̄;
now, find the sub-vectors x̄1, x̄2 . . . , x̄kklost that minimize ‖ ˙̄x‖2 under the constraint that all
checksum equations must be satisfied. By writing ˙̄x as a function of x̄ with the application
of a finite difference stencil, and then rewriting the checksum equations (63) to depend on
˙̄x instead of x̄, we are left with a well-posed convex optimization problem for ˙̄x that may be
solved using standard methods. The approach worked fairly well, though the derivation is
somewhat long, and becomes especially involved if to be extended to surfaces or volumes.
In addition, due to the global nature of the optimization, it is computationally expensive.
Upon further experiments, we found that though the underlying idea was right, a slightly

D1.3: Final report on ExaFLOW algorithmic developments 67

different path proved better.
Instead of formulating a problem that finds the smoothest possible solution that satisfy

all checksum equations, we assume that some compressed data or reduced model of x̄ is
available, denoted x̃. We then formulate a different optimization problem, i.e., find the
sub-vectors x̄1, x̄2 . . . , x̄kklost that minimize ‖x̄− x̃‖2 under the constraint that all checksum
equations must be satisfied. This approach turns out to both work well and, unlike the
other approach, be particularly simple to formulate and solve. The method is introduced in
section 5.2.3, and extended into an iterative scheme in section 5.2.4 to demonstrate partial
data recovery for incomplete checksums of image data.

5.2.3 Uniqueness by Minimizing Distance to Inexact Data

Let’s define ĉ as the right hand side of (64), so that the equation for recovery may be written
as

Arx̄
1:klost = ĉ (65)

When m < klost, all possible admissible solutions z to the under-determined system above
may be written as

z̄ = A+
r ĉ+

[
I − A+

r Ar
]
w̄ (66)

where A+
r is the Moore-Penrose pseudo inverse of Ar. w̄ is an arbitrary vector with kl

elements. The solution corresponding to w = 0̄, is the minimum norm solution, i.e., the
solution for which ‖z‖2 is the smallest amongst all the admissible solutions. If x̄ approximates
a function that is never too far from zero, one might speculate that computing

x̄1:klost = A+
r ĉ (67)

could potentially recover data that is close to what was lost. Let’s take that approach a bit
further, imagine that we have access to some reduced model or compressed data x̃ that ap-
proximates the original vector x̄. Upon failure, we’d like to use this data in conjunction with
the checksum equations to find an even better approximation to the lost data. Subtracting
Arx̃

1:klost from (65) we recover

Ar
(
x̄1:klost − x̃1:klost

)
= ĉ− Arx̃1:klost (68)

Applying the M–P pseudo inverse A+
r on each side and isolating x̄1:klost we arrive at

x̄1:klost = A+
r ĉ+

[
I − A+

r Ar
]
x̃1:klost (69)

where x̄1:klost as computed in (69) is the solution that minimize
∥∥x̄1:klost − x̃1:klost

∥∥
2

whilst

satisfying the constraint x̄1:klost = A+
r ĉ.

Two experiment with this approach at partial information recovery for incomplete check-
sum equations are presented in Figures 31 and 32. The vector x̄ contains data created from a
smoothed random walk, it contains a total of 10.000 data points. The data vector x̄ was split
into k = 100 separate sub-vectors, each containing 100 data points, and protected through

D1.3: Final report on ExaFLOW algorithmic developments 68

the creation checksum vectors as in (63), encoding vectors element-wise. x̃ is created by tak-
ing the first 20 modes of a Fourier transform of the entire dataset x̄. After encoding the m
checksum vectors, the first klost = 20 sub-vectors were removed. The figure contains both the
original data vector x̄, the compressed data x̃, and the recovered data x̄1:klost computed by
(69). In Figure 31, the data was protected using m = 15 checksums, hence in the incomplete
data recovery, 33.3% more sub-vectors were lost than checksum vectors created. In Figure
32, the data was protected using m = 18 checksums, hence in the incomplete data recovery,
10% more sub-vectors were lost than checksum vectors created. For all experiments, the
checksum matrix A was a Gaussian Random matrix.

This preliminary result indicates that the method works well. An interesting aspect of
the approach of ensuring uniqueness by minimizing the distance between the data to be
recovered, and some inexact data, is that the algorithm may be used to feed itself in an
iterative manor. An iteration could consists of first solving the constrained minimization
problem, followed by the application of some regularization function that modifies the data
towards some property, smoothness for example. In the next section, the method just derived
is used to create an improved, iterative, self-feeding algorithm for incomplete data recovery.

5.2.4 An Iterative, Self-Feeding, Recovery Scheme

In the previous section we demonstrated that partial information recovery for incomplete
checksums is possible when some compressed version, or reduced model, of the lost data was
available to be used in conjunction with the under-determined checksum equations.

Here we present a further improved method in the form of an iterative algorithm. Com-
puting (69) reconstructs the lost data by finding the solution, nearest to some guess, that
satisfy the checksum equations. After performing this operation, one could continue the
recovery procedure by applying some function, to the approximation found, that filters or
modifies the solution in accordance with what meta knowledge one might have on the struc-
ture of the lost data. If, for example, it is known that the data to be recovered represents a
continuous surface, one could apply a function that smoothe the solution a bit.

This new, filtered solution, will however in all likelihood no longer satisfy the checksum
equations. So it could be fed back into (69) as a new, improved guess. In this way, one could
alternate between the two, to potentially arrive at a better approximation to the data lost.
In the enumerated list below, the iterative scheme is outlined step-by-step.

1. Choose an initial guess x∗ = x̃1:klost . This could be zero if need be.

2. Form the error equation

Ar
(
x̄1:klost − x∗

)
= ĉ− Arx∗ ⇒ Are = r∗ (70)

Find the e with minimum euclidean norm ‖e‖2 among all admissible solutions.

3. Update x̄1:klost = x∗ + e.

4. If ‖e‖ / ‖x∗‖ < ε, algorithm converged.

D1.3: Final report on ExaFLOW algorithmic developments 69

1 100
-6
-5
-4
-3
-2
-1
0
1
2
3
4

Original Data
Compressed Data
Reconstructed Data

1 20

-1

0

1

2

3

11 16
-1

0

1

Figure 31: Numerical experiment testing the method (69) for partial information recovery
in incomplete checksums. The data indicated by the black line was stored in k = 100
separate containers. m = 15 checksum vectors were created to protect the content of the
containers. The klost = 20 first containers are removed, i.e. 33% more data vectors are lost
than checksum code vectors created.

D1.3: Final report on ExaFLOW algorithmic developments 70

1 100
-6
-5
-4
-3
-2
-1
0
1
2
3
4

Original Data
Compressed Data
Reconstructed Data

1 20

-1

0

1

2

3

11 16
-1

0

1

Figure 32: Numerical experiment testing the method (69) for partial information recovery
in incomplete checksums. The data indicated by the black line was stored in k = 100
separate containers. m = 18 checksum vectors were created to protect the content of the
containers. The klost = 20 first containers are removed, i.e. 11% more data vectors are lost
than checksum code vectors created.

D1.3: Final report on ExaFLOW algorithmic developments 71

5. Otherwise, apply filter to x̄1:klost .

6. Set x∗ = x̄1:klost , go to 2.

To test the method, we use it to recover images lost. In the test-case, all 16 images are stored
separately in 16 data sets, each image being 512x512 pixels. Another 3 data sets, consisting
of checksums, are computed element-wise, per color, using (63), to protect the images. The
images used are depicted in Figure 33 in their original form. (69) are used for step 2-3 in
the method outlined above.

In Figure 34, 4 images have been removed, and then recovered. The approximations
recovered are almost indistinguishable to the originals in Figure 33. In figure 35, 6 images
have been removed, i.e. the recovery procedure is attempting to recover having only half as
many checksums parity sets as data sets lost. The results are still visually pleasing, although
the recovered images have clearly been degraded in quality compared to the originals. In
the test, no compressed data was used to initiate the algorithm. As a guess for the first
iteration, a zero matrix was used.

An important thing to note about the results presented is that in the encoding procedure,
and subsequent decoding procedure, a set of randomly generated checksum matrices A was
used in a round-robin fashion, rather than just using a single A repeatedly as is normally the
case with erasure codes. Doing so improved the quality of the recovered images substantially
compared to using the same matrix A for all elements. In general, our observation was that
the increasing the number of randomly generated checksum matrices used would also increase
the quality of the images recovered. Using 4, or 16, randomly generated matrices was clearly
better than using a single matrix, the improvements were found to be diminishing however,
as using 64 matrices instead of 16 would yield results only marginally better.

5.2.5 Summary

In this section we set out to investigate to what extent it might be possible to find an approx-
imate solution to the problem of recovering lost data from an under-determined checksum
system, when having some knowledge of the underlying structure of the data encoded. We
proposed a new method, and tested its application on a weighted checksum scheme for float-
ing point numbers. Our preliminary finding is that the answer is yes, it is indeed possible to
partially recover the data otherwise considered lost.

The data recovered when klost > m is not of machine accuracy with respect to the
original data, so for the approach to be of practical use in applications like the multi-level
checksum checkpointing scheme presented in D2.4, one would need some way of quantifying
the accuracy expected of the data recovered.

The method as presented works best when generating and using multiple checksum ma-
trices. These checksum matrices needs to be stored as well since they are needed in the
decoding scheme. The added memory overhead is however very small, in the example given
the checksum matrices took up 0.8KB of space compared to 12.6MB for the image data.

Using Gaussian matrices to encode a checksum is somewhat of a niche in the context of
fault-tolerance as it really only applies to floating point numbers where the exact bitwise

D1.3: Final report on ExaFLOW algorithmic developments 72

Figure 33: The original version of the 16 images used to demonstrate the method outlined.
Each image is 512x512 pixels, and stored in separate data containers that are assumed to be
failure prone. The images are taken from the The USC-SIPI Image Database[73]. In figures
34 and 35, the partial information recovery procedure is demonstrated when removing 4 and
6 images respectively.

D1.3: Final report on ExaFLOW algorithmic developments 73

(a) Four images removed.

(b) Four images reconstructed.

Figure 34: Three checksums were computed to protect the content of the 16 containers. (a)
Shows four images removed. (b) Depicts the recovered images.

D1.3: Final report on ExaFLOW algorithmic developments 74

(a) Six images removed.

(b) Six images reconstructed.

Figure 35: Three checksums were computed to protect the content of the 16 containers. (a)
Shows six images removed. (b) Depicts the recovered images.

D1.3: Final report on ExaFLOW algorithmic developments 75

representation is not necessary upon recovery. For the method introduced to have practical
relevance, it must be extended to the case where the checksum matrix elements are from
a Galois field, i.e. Reed-Solomon codes. There are no obvious reasons to believe that the
fundamental idea of alternating between enforcing the constraint of the checkpoint equations,
and applying some filter, should not work. In practice though, one need a way of completing
step 2-3 in the method as outlined in section 5.2.4. When A ∈ Rm×k, the Moore–Penrose
pseudo inverse could be used as it provides the minimum euclidean norm solution to the
under-determined linear system.

A solution procedure for the same problem when A ∈ Fm×k is less obvious. Generalized
inverses of matrices with elements from finite fields is a research topic that has received lim-
ited attention. Some first results on matrices over finite fields that satisfy the four criteria
of a Moore-Penrose pseudo inverse were published in [31]. In [74], necessary and sufficient
conditions on A ∈ Fm×k for the existence of A+ was given, and in [18] a method for con-
structing the Moore–Penrose pseudo inverse was presented. It is however not clear if/how
the minimum norm property applies here. In short, further studies are needed to generalize
the method.

If successfully extended, the method could potentially have a wide number of applications
in fault tolerance and error correction, also outside the context of HPC. Today the average
data-center consumes as much power as a small city. In the US alone, data-centers and cloud-
service providers store several hundred million terabytes of data, and account for more than
2% of the nations electricty consumption[67]. Overhead related to protection of data accounts
for a substantial part of the energy usage, this mainly due to extensive use of redundancy
and erasure code to ensure that the probability of hard-drive data loss is extremely small. If
a method existed that would allow for robust partial information recovery in the commonly
used erasure codes, this would mean that failures that would otherwise result in complete
data loss would instead only result in loss of data fidelity which in turn could potentially
lead to relaxed requirement on data protection for certain applications.

6 Summary and outlook

In this deliverable, we have reported on the progress achieved during the last 18 months
by the ExaFLOW WP1 partners, in terms of developing new algorithms and techniques
that can capitalise on the potential offered for fluid dynamics simulations on future exascale
platforms. Across the project, we have made great strides in improving the state-of-the-art
in the objectives identified at the start of this project as current bottlenecks for exascale
fluid dynamics problems. In the points below, we outline some of the key achievements and
scope for future work in these areas.

• In terms of error control and mesh refinement, we have developed efficient techniques
for the automatic identification of solution error based on both spectral error indicators
and goal-based adjoint error estimators. Together with an efficient adaptive mesh re-
finement strategy that builds on the algorithmic developments in terms of coarse space

D1.3: Final report on ExaFLOW algorithmic developments 76

preconditioning and solver robustness, the simulations in WP2 and WP3 demonstrate
significant capability improvements for realistic exascale test cases. In ExaFLOW, we
have mostly focused on a complete, efficient implementation using element size h to
provide the route to increasing resolution. Future work in this area can focus on the
incorporation of additional aspects of refinement; in particular, the variation of poly-
nomial order (p-refinement) and node position (r-refinement) are alternate strategies
that, although briefly during this project (see e.g. [56]) could be further investigated
alongside the balance of each refinement strategy. The introduction of heterogeneous
modelling, in which different fluid models are introduced in different regions of the do-
main, also shows great potential in terms of reducing computational cost and improving
time-to-solution and scalability whilst maintaining the accuracy of solutions.

• To improve strong scaling of these codes, we have investigated various algorithmic
developments based around higher-order spectral element codes. In particular, as part
of work on adaptive mesh refinement, significant advances have been made in terms
of load balancing and the use of algebraic multigrid approaches for the improvement
of coarse grid preconditioning, which is a significant obstacle for strong scaling of
these methods. Future work in this area can focus on extending this work to larger-
scale unstructured grids, as briefly discussed in D2.4. Finally, although the CG-HDG
formulation shows good potential in terms of improving strong scaling, it was found
that on current hardware, time-to-solution is unlikely to be improved. However,

• Significant effort has been invested in the development of compression techniques to
alleviate the I/O burden anticipated for exascale simulations. We have adopted two
approaches: first, investigating the development of a wavelet-based compression al-
gorithm within the JPEG-2000 standard. The reported results in D2.4 for realistic
flow data using the Taylor-Green vortex highlight that this approach is both viable
and capable of attaining high compression ratios whilst still retaining accuracy of the
underlying data sufficient for postprocessing. The second approach has focused on
reduced-order modelling of the underlying datasets, by investigating decomposition of
the data through mathematical approaches such as SVD. Future work in this area
can focus on the producing an optimized implementation of the wavelet-based codec,
alongside efficiency improvements to increase data throughput and the consideration
of data attained through mesh refinement techniques.

• Finally, we have worked to make resilient exascale simulations through the development
of fault tolerant algorithms. We have adopted two approaches. The first takes a
minimally intrusive approach to allow for complex transient solvers, such as those
included in the Nektar++ framework, to be hardened against hardware failures without
excessive changes to the inner workings of the program. The efficacy of this approach
is demonstrated further in D2.4, where in-memory checkpointing and MPI ULFM are
combined to examine fault tolerance for a fluid dynamics solver within Nektar++.
The second approach examines a method that is more intrusive, but comes with the
benefit of greater flexibility in memory efficiency and lower memory overhead. The

D1.3: Final report on ExaFLOW algorithmic developments 77

development of a separate library, described in D2.4, provides an ideal platform for
projects to benefit from this algorithmic development. Future work in this area can
focus on both the incorporation of this library within fluid dynamics solvers, as well
as to investigate further the use of partial data recovery. This approach should allow
simulations to recover even when the parity information is only partially available,
providing the ability to significantly increase robustness for fluid dynamics codes.

D1.3: Final report on ExaFLOW algorithmic developments 78

References

[1] Tinku Acharya and Ping-Sing Tsai. JPEG2000 Standard for Image Compression: Con-
cepts, Algorithms and VLSI Architectures. John Wiley & Sons, Hoboken, New Jersey,
2005.

[2] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi
Zounon. Towards resilient parallel linear krylov solvers: recover-restart strategies. Tech-
nical Report RR-8324, INRIA, 2013.

[3] Douglas N Arnold, Franco Brezzi, Bernardo Cockburn, and L Donatella Marini. Uni-
fied analysis of discontinuous galerkin methods for elliptic problems. SIAM journal on
numerical analysis, 39(5):1749–1779, 2002.

[4] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential
Equations. Birkhäuser, Basel, 2002.

[5] Richard Barrett, Michael W Berry, Tony F Chan, James Demmel, June Donato, Jack
Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.
Templates for the solution of linear systems: building blocks for iterative methods, vol-
ume 43. Siam, 1994.

[6] Y. Bazilevs and T.J.R. Hughes. Weak imposition of Dirichlet boundary conditions in
fluid mechanics. Computers & Fluids, 36(1):12 – 26, 2007. Challenges and Advances in
Flow Simulation and Modeling.

[7] Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes. Weak dirichlet boundary
conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics
and Engineering, 196(49):4853 – 4862, 2007.

[8] Wesley Bland, George Bosilca, Aurelien Bouteiller, Thomas Herault, and Jack Don-
garra. A proposal for user-level failure mitigation in the MPI-3 standard. Technical
report, 2 2012.

[9] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Don-
garra. Post-failure recovery of MPI communication capability. The International Jour-
nal of High Performance Computing Applications, 27(3):244–254, 1 2013.

[10] A. Busse and N. D. Sandham. Parametric forcing approach to rough-wall turbulent
channel flow. Journal of Fluid Mechanics, 712:169202, 2012.

[11] Atife Caglar and Anastasios Liakos. Weak imposition of boundary conditions for the
navier–stokes equations by a penalty method. International journal for numerical meth-
ods in fluids, 61(4):411–431, 2009.

[12] Xiao-Chuan Cai and Marcus Sarkis. A restricted additive schwarz preconditioner for
general sparse linear systems. SIAM J. Sci. Comput., 21(2):792–797, September 1999.

D1.3: Final report on ExaFLOW algorithmic developments 79

[13] Chris D. Cantwell, David Moxey, Andrew Comerford, Alessandro Bolis, Gabriele Rocco,
Gianmarco Mengaldo, Daniele De Grazia, Sergey Yakovlev, Jean-Eloi. Lombard, Dirk
Ekelschot, Bastien Jordi, Hui Xu, Yumnah Mohamied, Claes Eskilsson, Blake Nelson,
Peter Vos, Cristian Biotto, Robert M. Kirby, and Spencer J. Sherwin. Nektar++:
An open-source spectral/ hp element framework. Computer Physics Communications,
192:205–219, 7 2015.

[14] Chris D Cantwell and Allan S Nielsen. A minimally intrusive low-memory approach to
resilience for existing transient solvers. Journal of Scientific Computing, pages 1–17,
2018.

[15] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomputing Frontiers and Innovations,
1(1), 1 2014.

[16] Zizhong Chen and Jack J Dongarra. Condition numbers of gaussian random matrices.
SIAM Journal on Matrix Analysis and Applications, 27(3):603–620, 2005.

[17] Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov. Unified Hy-
bridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for
Second Order Elliptic Problems. SIAM Journal on Numerical Analysis, 47(2):1319–
1365, 2009.

[18] Zongduo Dai and Yufeng Zhang. Partition, construction, and enumeration of m–p
invertible matrices over finite fields. Finite Fields and Their Applications, 7(3):428–
440, 2001.

[19] David David Taubman and Michael Marcellin. JPEG2000: Image Compression Funda-
mentals, Standards and Practice. Springer US, New York City, 2002.

[20] M. O. Deville, P. F. Fischer, and E. H. Mund. High-Order Methods for Incompressible
Fluid Flow. Cambridge University Press, 2002.

[21] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal
on Matrix Analysis and Applications, 9(4):543–560, 1988.

[22] Evridiki Efstathiou and Martin J. Gander. Why restricted additive schwarz converges
faster than additive schwarz. BIT Numerical Mathematics, 43(5):945–959, 2003.

[23] Lars Eldén. Matrix Methods in Data Mining and Pattern Recognition (Fundamentals of
Algorithms). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2007.

[24] P. Fischer, N. Miller, and H. Tufo. An overlapping schwarz method for spectral element
simulation of three-dimensional incompressible flow. In P. Bjorstad and M. Luskin,
editors, Parallel Solution of Partial Differential Equations, volume 120 of The IMA
Volumes in Mathematics and its Applications, pages 159–180. Springer New York, 2000.

D1.3: Final report on ExaFLOW algorithmic developments 80

[25] P. Fischer and J. Mullen. Filter-based stabilization of spectral element methods.
Academie des Sciences Paris Comptes Rendus Serie Sciences Mathematiques, 332:265–
270, February 2001.

[26] Paul F. Fischer. An overlapping schwarz method for spectral element solution of the
incompressible navier stokes equations. Journal of Computational Physics, 133:84–101,
May 1997.

[27] Paul F Fischer. Scaling limits for pde-based simulation. In 22nd AIAA Computational
Fluid Dynamics Conference, page 3049, 2015.

[28] Paul F. Fischer, Gerald W. Kruse, and Francis Loth. Spectral element methods for
transitional flows in complex geometries. J. Sci. Comput., 17(1-4):81–98, December
2002.

[29] Paul F. Fischer and James W. Lottes. Hybrid Schwarz-Multigrid Methods for the Spectral
Element Method: Extensions to Navier-Stokes, pages 35–49. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[30] Jouni Freund and Rolf Stenberg. On weakly imposed boundary conditions for second
order problems. In Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, pages
327–336. Venice, 1995.

[31] John D Fulton. Generalized inverses of matrices over a finite field. Discrete mathematics,
21(1):23–29, 1978.

[32] M. N. Gamito and M. Salles Dias. Lossless coding of floating point data with JPEG
2000 Part 10. In A. G. Tescher, editor, Applications of Digital Image Processing XXVII,
volume 5558, pages 276–287, November 2004.

[33] Ralf Hartmann. Adjoint consistency analysis of discontinuous Galerkin discretizations.
SIAM Journal on Numerical Analysis, 45(6):2671–2696, 2007.

[34] Henri Bruno Razafindradina, Paul Auguste Randriamitantsoa, and Nicolas Raft
Razafindrakoto. Image compression with svd: A new quality metric based on energy
ratio. CoRR, abs/1701.06183, 2016.

[35] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems. ACM Transactions on Storage
(TOS), 9(1):3, 2013.

[36] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, Sergey Yekhanin, et al. Erasure coding in windows azure storage.
2012.

D1.3: Final report on ExaFLOW algorithmic developments 81

[37] C. T. Jacobs, S. P. Jammy, and N. D. Sandham. OpenSBLI: A framework for the
automated derivation and parallel execution of finite difference solvers on a range of
computer architectures. Journal of Computational Science, 18:12–23, 2017.

[38] C. T. Jacobs, N. D. Sandham, and N. De Tullio. An error indicator for finite difference
methods using spectral techniques with application to aerofoil simulation. In Abstracts
of the Parallel CFD (ParCFD) 2017 conference, Glasgow, Scotland, 15–17 May 2017,
2017.

[39] Christian T. Jacobs, Markus Zauner, Nicola De Tullio, Satya P. Jammy, David J. Lusher,
and Neil D. Sandham. An error indicator for finite difference methods using spectral
techniques with application to aerofoil simulation. Computers and Fluids, 168:67 – 72,
2018.

[40] Claes Johnson and Peter Hansbo. Adaptive finite element methods in computational
mechanics. Computer Methods in Applied Mechanics and Engineering, 101(1):143 – 181,
1992.

[41] Mika Juntunen and Rolf Stenberg. Nitsche’s method for general boundary conditions.
Mathematics of computation, 78(267):1353–1374, 2009.

[42] George Em Karniadakis, Moshe Israeli, and Steven A Orszag. High-order splitting meth-
ods for the incompressible navier-stokes equations. Journal of computational physics,
97(2):414–443, 1991.

[43] Robert M Kirby and George Em Karniadakis. De-aliasing on non-uniform grids: algo-
rithms and applications. Journal of Computational Physics, 191(1):249–264, 2003.

[44] Robert M. Kirby, Spencer J. Sherwin, and Bernardo Cockburn. To CG or to HDG: A
comparative study. Journal of Scientific Computing, 51(1):183–212, 2011.

[45] Gerald W. Kruse. Parallel Nonconforming Spectral Element Solution of the Incompress-
ible Navier-Stokes Equations in Three Dimensions. PhD thesis, Providence, RI, USA,
1997. UMI Order No. GAX97-38573.

[46] Julien Langou, Zizhong Chen, Jack J Dongarra, and George Bosilca. Disaster survival
guide in petascale computing. In Petascale Computing: Algorithms and Applications,
pages 263–288. Chapman and Hall/CRC, 2007.

[47] W Layton. Weak imposition of no-slip conditions in finite element methods. Computers
& Mathematics with Applications, 38(5-6):129–142, 1999.

[48] Jurij Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of massive datasets.
Cambridge University Press, Cambridge, second edition edition, 2014.

[49] Anastasios Liakos. Weak imposition of boundary conditions in the stokes problem.
Technical report, University of Pittsburgh, 1999.

D1.3: Final report on ExaFLOW algorithmic developments 82

[50] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on
Visualization and Computer Graphics, 20(12):2674–2683, Dec 2014.

[51] Alexander Loddoch and Jrg Schmalzl. Variable quality compression of fluid dynamical
data sets using a 3-d dct technique. Geochemistry, Geophysics, Geosystems, 7(1):n/a–
n/a, 2006. Q01003.

[52] Jean-Eloi W Lombard, David Moxey, Spencer J Sherwin, Julien FA Hoessler, Sridar
Dhandapani, and Mark J Taylor. Implicit large-eddy simulation of a wingtip vortex.
AIAA Journal, 2015.

[53] James W. Lottes and Paul F. Fischer. Hybrid multigrid/schwarz algorithms for the
spectral element method. Journal of Scientific Computing, 24(1):45–78, 2005.

[54] M Manasse, C Thekkath, and A Silverberg. A reed-solomon code for disk storage, and
efficient recovery computations for erasure-coded disk storage.

[55] Catherine Mavriplis. A posteriori error estimators for adaptive spectral element tech-
niques. In Peter Wesseling, editor, Notes on Numerical Fluid Mechanics, pages 333–342,
1990.

[56] D. Moxey, C. D. Cantwell, G. Mengaldo, D. Serson, D. Ekelschot, J. Peiró, S. J. Sher-
win, and R. M. Kirby. Towards p-adaptive spectral/hp element methods for modelling
industrial flows. In Spectral and High Order Methods for Partial Differential Equations
ICOSAHOM 2016, pages 63–79, 2017.

[57] Prabal Negi, Philipp Schlatter, and Dan Henningson. A re-examination of filter-based
stabilization for spectral-element methods. Technical report, KTH, Stability, Transition
and Control, 2017. QC 20171121.

[58] Joachim Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei
Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. In Ab-
handlungen aus dem mathematischen Seminar der Universität Hamburg, volume 36,
pages 9–15. Springer, 1971.

[59] Dimitris S Papailiopoulos and Alexandros G Dimakis. Locally repairable codes. IEEE
Transactions on Information Theory, 60(10):5843–5855, 2014.

[60] Majid Rabbani and Rajan Joshi. An overview of the {JPEG} 2000 still image compres-
sion standard. Signal Processing: Image Communication, 17(1):3 – 48, 2002. {JPEG}
2000.

[61] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960.

D1.3: Final report on ExaFLOW algorithmic developments 83

[62] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos, Alexan-
dros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur. Xoring ele-
phants: Novel erasure codes for big data. In Proceedings of the VLDB Endowment,
volume 6, pages 325–336. VLDB Endowment, 2013.

[63] Philipp Schlatter, Steffen Stolz, and Leonhard Kleiser. Les of transitional flows using
the approximate deconvolution model. International Journal of Heat and Fluid Flow,
25(3):549 – 558, 2004. Turbulence and Shear Flow Phenomena (TSFP-3).

[64] Bianca Schroeder and Garth A Gibson. Disk failures in the real world: What does an
mttf of 1,000,000 hours mean to you? In FAST, volume 7, pages 1–16, 2007.

[65] Bianca Schroeder and Garth A. Gibson. Understanding failures in petascale computers.
Journal of Physics: Conference Series, 78:012022, 7 2007.

[66] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash reliability in production:
The expected and the unexpected. In Proceedings of the 14th USENIX Conference on
File and Storage Technologies, 2016.

[67] Arman Shehabi, Sarah Josephine Smith, Dale A. Sartor, Richard E. Brown, Magnus
Herrlin, Jonathan G. Koomey, Eric R. Masanet, Nathaniel Horner, Inês Lima Azevedo,
and William Lintner. United states data center energy usage report. Technical report,
06/2016 2016.

[68] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi,
Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A Chien,
Paul Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian Engelmann, Mattan
Erez, Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoor-
thy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon
Stearley, and Eric Van Hensbergen. Addressing failures in exascale computing. The
International Journal of High Performance Computing Applications, 28(2):129–173, 1
2014.

[69] H.M Tufo and P.F Fischer. Fast parallel direct solvers for coarse grid problems. J.
Parallel Distrib. Comput., 61(2):151–177, February 2001.

[70] José M Urquiza, André Garon, and Marie-Isabelle Farinas. Weak imposition of the slip
boundary condition on curved boundaries for stokes flow. Journal of Computational
Physics, 256:748–767, 2014.

[71] Bryan E. Usevitch. Jpeg2000 compatible lossless coding of floating-point data. Eurasip
Journal on Image and Video Processing, 2007:1–8, 3 2007.

[72] Z.J. Wang, Krzysztof Fidkowski, Rmi Abgrall, Francesco Bassi, Doru Caraeni, Andrew
Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, H.T. Huynh, Norbert Kroll,

D1.3: Final report on ExaFLOW algorithmic developments 84

Georg May, Per-Olof Persson, Bram van Leer, and Miguel Visbal. High-order cfd meth-
ods: current status and perspective. International Journal for Numerical Methods in
Fluids, 72(8):811–845, 2013.

[73] Allan Weber. The USC-SIPI Image Database, 2018. link [Acccessed: 02.08.2018].

[74] Chuan-Kun Wu and Ed Dawson. Existence of generalized inverse of linear transforma-
tions over finite fields. Finite Fields and Their Applications, 4(4):307–315, 1998.

[75] Sergey Yakovlev, David Moxey, Robert M. Kirby, and Spencer J. Sherwin. To CG or
to HDG: A comparative study in 3D. Journal of Scientific Computing, 67(1):192–220,
2016.

http://sipi.usc.edu/services/database/data-base.html

	List of Figures
	Abbreviations
	Introduction
	Error control and mesh refinement
	Spectral error indicators
	Spectral element discretisations
	Finite difference discretisations

	Adjoint error estimators
	Weak form of the steady Navier–Stokes equations
	Expression of the functional
	Lagrange optimisation
	Adjoint equations
	Error on the functional
	Contributions to the error

	Adaptive mesh refinement
	Adaptation of the hybrid Schwarz-multigrid preconditioner to nonconforming meshes
	Solver stabilisation based on high-pass filter
	Two-level partitioning

	Error control for heterogeneous modelling
	Methodology
	Results

	CG-HDG formulation
	Motivation
	Weak boundary condititions as part of CG-HDG formulation
	Weak boundary conditions in underresolved flows
	Review of existing algorithms for boundary discretization

	Overview of the formulation of HDG method
	Continuous problem
	HDG interpolation spaces and discretization
	Approximation spaces
	Global formulation for HDG problem
	Local solvers in the HDG method
	Global problem for trace variable
	Discrete form of HDG local solver
	Continuous finite elements with weak Dirichlet boundary conditions
	Results
	Convergence of continuous Galerkin solver with weak boundary conditions
	Comparison with classical penalty techniques
	Navier-Stokes results
	NACA6412
	Unsteady flow past a turbine blade

	Discretization of global transmission condition in the CG-HDG algorithm

	Compression algorithms
	JPEG 2000
	Theory

	Singular Value Decomposition

	Fault tolerance
	Minimally intrusive resiliance for transient solvers
	State Protection
	State Recovery

	Partial Information Recovery with Incomplete Checksums
	The Weighted Checksum Scheme
	Partial information recovery for incomplete checksums
	Uniqueness by Minimizing Distance to Inexact Data
	An Iterative, Self-Feeding, Recovery Scheme
	Summary

	Summary and outlook

