
The opinions of the authors expressed in this document do not necessarily reflect the
official opinion of the ExaFLOW partners nor of the European Commission.

H2020 FETHPC-1-2014
	

	

Enabling Exascale Fluid Dynamics Simulations
Project Number 671571

	
	
	

D2.2 – Initial report on the
ExaFLOW algorithms, energy

efficiency & IO strategies.

WP2:	Efficiency	improvements	towards	
exascale.	

	
	
	
	
	
	

	
	

Copyright©	2017	The	ExaFLOW	Consortium	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 2	

Document	Information	
	
Deliverable	Number	 D2.1	

Deliverable	Name	 Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	
&	IO	strategies	

Due	Date	 31/03/2017	(PM18)	
Deliverable	Lead	 UEDIN	

Authors	

Nick	Johnson,	UEDIN	
Michael	Bareford,	UEDIN	
Mirren	White,	UEDIN	
Niclas	Jansson,	KTH	
Adam	Peplinski,	KTH	
Jing	Gong,	KTH	
Nicolas	Offermans,	KTH	
Björn	Dick,	USTUTT	
Jing	Zhang,	USTUTT	
Patrick	Vogler,	USTUTT	
Satya	P.	Jammy,	SOTON	
Christian	T.	Jacobs,	SOTON	
Martin	Vyzamal,	IMPERIAL	

Responsible	Author	 Nick	Johnson,	UEDIN,	n.johnson@epcc.ed.ac.uk	

Keywords	 Efficiency;	 Efficient	 Implementation;	 Exascale;	 Energy	
Efficiency;	Data	compression	

WP	 WP2	
Nature	 R	
Dissemination	Level	 PU	
Final	Version	Date	 31/03/2017	

Reviewed	by	
Erwin	Laure,	KTH	
David	Moxey,	IMPERIAL	
Christian	T.	Jacobs,	SOTON	

MGT	Board	Approval	 31/03/2017	
	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 3	

	
Document	History	
	

Partner	 Date	 Comments	 Version	

UEDIN	 17/01/17	 Skeleton	 outlining	 contributions	 expected	
from	partners.	 0.1	

UEDIN	 27/02/17	 Merge	contributions	from	partners.	 0.2	
UEDIN	 28/02/17	 Implement	 consistent	 references;	 correct	

figures	 and	 placing;	 add	 chapter	
introductions.	

0.3	

UEDIN	 28/02/17	 Write	 conclusions,	 introductions;	 update	
author	list.	

0.4	

UEDIN	 25/03/17	 Incorporated	reviewer	feedback	 0.5	
KTH	 31/03/17	 Final	version	for	submission	 1.0	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 4	

Executive	Summary	
	
This	deliverable	reports	on	the	work	carried	out	in	the	first	half	of	the	ExaFLOW	
project	 as	 part	 of	 WorkPackage	 2.	 Specifically,	 it	 reports	 on	 actions	 taken	 to	
improve	 the	 efficiency	 of	 the	 implementations	 of	 the	 algorithms	 used	 for	
Computation	Fluid	Dynamics	(CFD)	as	developed	in	WorkPackage	1.	The	aims	of	
this	deliverable	are	to:	

• Report	 on	 the	 progress	 of	 efforts	 undertaken	 to	 formulate	 efficient	
implementations	of	algorithms,	primarily	stemming	from	WorkPackage	1,	
and,	

• Look	 ahead	 to	work	which	will	 be	undertaken	 in	 the	 second	half	 of	 the	
project	 to	 ensure	 completion	 of	 the	 objections	 as	 set	 out	 in	 the	 project	
proposal	and	description	of	work.	

	
In	this	deliverable,	efficiency	improvements	are	any	changes	which	improve	the	
performance	 in	 terms	of	 time	 to	solution	and	energy	 to	solution.	 In	 the	 former	
case,	 this	 includes	methods	 of	 code	 generation	where	 time	 to	 solution	 can	 be	
reduced	by	having	the	exact	code	to	resolve	the	problem	generated	by	machine	
rather	than	coded	by	hand.	
	
The	work	is	structured	into	four	primary	strands,	aligned	with	the	four	tasks	and	
a	summary	of	the	work	in	each	strand	is	follows.	
	
Implementation	of	algorithms	in	co-design	applications.	
Three	different	activities	have	been	undertaken	in	this	area:	

• Use	 of	 code	 generation	 software,	 where	 code	 is	 generated	 from	 a	
description	of	the	input	problem	and	target	architecture	where	it	is	to	be	
run	 and	 then	 executed.	 This	method	 has	 two	 principal	 advantages	 over	
traditional	methods;	being	able	 to	 transform	 the	 input	problem	and	 the	
solution	 method	 with	 knowledge	 of	 the	 execution	 target	 which	 may	
provide	an	opportunity	for	cross-layer	optimisation	and,	reducing	the	time	
required	 to	 code	 the	 problem	 and	 solution	 method	 and	 reducing	 the	
requirement	for	coding	on	the	end	user.	The	OpenSBLI	software	package	is	
an	 implementation	 of	 this	method	 and	 results	 show	 good	 agreement	 of	
solutions	 to	 standard	 problems	 obtained	 by	 this	 software	 with	 those	
obtained	other,	traditionally	coded	software.	

• Implementation	of	algorithms	for	Adaptive	Mesh	Refinement	in	Nek5000	
and	 extension	 of	 those	 developed	 in	 earlier	 projects.	 In	 this	 case,	
algorithms	developed	by	partners	in	previous	projects	are	refined	and	re-
implemented	 to	provide	 further	performance	and	 functionality.	 In	 some	
cases,	 external	 library	 software	 is	 used	 in	 place	 of	 in-built	 routines	 to	
provide	stability,	speed	and	functionality,	reducing	the	time	to	solution.	

• Implementation	of	an	alternative	communications	library	for	Nek5000	and	
Nektar++.	 Both	 Nek5000	 and	 Nektar++	 can	 use	 the	 GS	 library	 for	
performing	MPI-based	 communications.	Whilst	 robust,	 this	 library	 does	
not	 take	 advantage	 of	 newer	 MPI	 features	 such	 as	 single-sided	
communications.	 The	 ExaGS	 library	 is	 offered	 as	 a	 replacement.	 It	 is	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 5	

implemented	 in	 UPC	 and	 therefore	 able	 to	make	 efficient	 use	 of	 RDMA	
mechanisms	on	machines	which	support	it.	

	
Energy	Efficiency	

• Three	 separate	 studies	 of	 the	 energy	 efficiency	 of	 applications	 were	
performed.	The	first	two	used	the	built-in	power	monitoring	features	of	the	
Cray	system	available	to	the	project	in	UEDIN	and	USTUTT.	Whilst	studying	
separates	 code	 the	 two	 studies	 showed	 that	 changing	 the	 operating	
frequency	of	nodes	can	result	in	a	significant	savings	in	energy	to	solution	
without	excessively	 increase	time	to	solution.	 In	one	case,	changing	CPU	
frequency	 to	 1.7GHz	 is	 optimal	when	measured	 using	 the	 Energy	Delay	
Product	(EDP).	Doing	so	reduces	the	energy	demand	by	19.2%	compared	
to	the	default	setting	of	2.5GHz	while	increasing	the	runtime	by	12.6%.	If	
compared	 to	 turbo	mode	 (3.4	GHz),	 energy	 savings	of	34%	are	possible	
while	increasing	the	runtime	by	20%.	

• The	 third	 study	 used	 custom	 hardware	 to	 look	 at	 individual	 hardware	
components	 such	 as	 Disk,	 DRAM	 and	 CPU	 to	 investigate	 if	 there	 was	
potential	for	optimisation	to	further	reduce	energy	consumption.	

	
I/O	
A	small	part	of	this	workpackage	is	tied	to	the	algorithms	for	data	reduction	in	
workpackage	1,	focussing	on	the	measurement	and	implementation	of	algorithms	
for	lossless	and	lossy	compression	of	CFD	specific	data.	
	
Technology	Watch	
A	final	task	in	this	workpackage	is	to	keep	abreast	of	emerging	technologies	which	
will	likely	have	a	positive	effect	on	the	performance	of	CFD	codes.	An	outline	of	
the	 various	 improvements	 which	 would	 likely	 have	 positive	 effects	 were	
discussed	in	deliverable	D2.1.	Specifically,	it	is	likely	that	Xeon	Phi	processors	and	
memory	with	large	bandwidth	and	more	complex	structures	will	be	available	to	
test	with	the	co-design	applications	in	the	second	half	of	this	project.	
		
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 6	

1 Contents	
3	 Table	of	Acronyms	..	9	
4	 Introduction	..	10	
5	 Implementation	of	algorithms	in	co-design	applications	11	
5.1	 Code	generation	for	CFD	..	11	
5.2	 Adaptive	Mesh	Refinement	...	13	
5.2.1	 Grid	management	...	14	
5.2.2	 Implementation	 of	 the	 pressure	pre-conditioner	 for	 nonconforming	
meshes	...	15	
5.2.3	 AMG	Pre-conditioners	..	20	

5.3	 ExaGS	library	...	23	
5.4	 Hybridizable	DG	...	25	

6	 Energy	efficiency	...	27	
6.1	 Energy	efficiency	of	generated	codes	...	27	
6.2	 Clock	frequency	adaption	..	28	
6.2.1	 Actual	computation	..	29	
6.2.2	 Halo	exchange	..	29	
6.2.3	 I/O	...	30	

6.3	 Further	Power	Analysis	..	39	
6.3.1	 Energy	to	Solution	..	39	
6.3.2	 Power	profiles	..	42	

7	 Data	Management	&	IO	...	45	
8	 Conclusion	and	Future	Work	...	46	
9	 Bibliography	..	47	
	
	
	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 7	

2 Table	of	Figures	
Figure	1:	Visualisation	of	the	solution	to	the	Taylor-Green	vortex	problem	in	3D.

	...	11	
Figure	2:	Comparison	of	enstrophy	and	kinetic	energy	results	from	OpenSBLI	to	

other	DNS	data.	..	12	
Figure	3:	Convergence	of	the	solution	field	'phi'	for	schemes	of	order	2	up	to	12.

	...	12	
Figure	4:	The	total	run-time	(left)	and	normalised	speed-up	of	5	different	finite	

difference	algorithms	in	the	context	of	a	Taylor-Green	vortex	simulation.	The	
Baseline	(BL)	algorithm	which	stores	all	derivatives	in	global	work	arrays	is	
the	 worst	 algorithm	 in	 t	 terms	 of	 run-time,	 while	 the	 Store	 Some	 (SS)	
algorithm	 which	 stores	 the	 first	 derivatives	 of	 velocity	 components	 as	
thread/process-local	variables	is	the	fastest	algorithm.	13	

Figure	5:	The	 error	 of	 the	 stream-wise	 velocity	 component	 for	 the	 conforming	
mesh.	Black	lines	show	element	boundaries.	...	15	

Figure	6:	The	error	of	the	stream-wise	velocity	component	for	the	nonconforming	
mesh.	Black	lines	show	element	boundaries.	...	16	

Figure	7:	Exemplary	 shape	of	 the	 coarse	base	 functions	 for	 the	nonconforming	
mesh.	Element	boundaries	are	marked	by	black	lines.	..	17	

Figure	 8:	 Iteration	 count	 of	 the	 pressure	 solver	 as	 a	 function	 of	 time	 step	 for	
conforming	 and	 nonconforming	 setups	 of	 3D	 lid	 driven	 cavity.	 The	
nonconforming	 setup	 uses	 two	 different	 definitions	 of	 the	 local	 child-to-
parent	mapping	operator:		J-1	and		JT.	...	17	

Figure	 9:	 Initial	 stream-wise	 velocity	 component	 for	 the	 backward-facing	 step	
simulation.	..	18	

Figure	10:	Initial	error	estimator	for	the	backward-facing	step	simulation.	18	
Figure	 11:	 Final	 stream-wise	 velocity	 component	 for	 the	 backward-facing	 step	

simulation.	..	18	
Figure	12:	Final	error	estimator	for	the	backward-facing	step	simulation.	18	
Figure	 13:	 Number	 of	 velocity	 iteration	 as	 a	 function	 of	 time	 step	 for	 the	

backward-facing	step	simulation.	..	19	
Figure	 14:	 Number	 of	 pressure	 iterations	 as	 a	 function	 of	 time	 step	 for	 the	

backward-facing	step	simulation.	To	make	plot	readable	we	presented	first	
2000	time	steps	only.	..	19	

Figure	15:	Ostrowski	coarsening	with	norm	bound.	...	21	
Figure	16:	AMG	solver.	...	22	
Figure	17:	An	illustration	of	the	directory	of	object	data	structure	on	four	threads.

	...	24	
Figure	 18:	 Weak	 scalability	 test	 of	 the	 crystal	 router	 gather-scatter	 operation	

inside	Nekbarebone,	using	128	elements	per	core,	with	a	polynomial	order	of	
ten,	running	on	the	Cray	XC40	Beskow.	..	25	

Figure	 19:	 Cumulative	 energy	 (left)	 and	 power	 consumption	 (right)	 over	 500	
iterations	of	a	Taylor-Green	vortex	simulation	when	run	in	parallel	over	24	
MPI	processes	on	a	single	24-core	ARCHER	node.	...	27	

Figure	 20:	 Cumulative	 energy	 (left)	 and	 power	 consumption	 (right)	 over	 500	
iterations	of	a	Taylor-Green	vortex	simulation	when	run	in	parallel	over	64	
MPI	processes	on	a	single	Intel	Xeon	Phi	KNL	processor.	28	

Figure	21:	Energy	demand	of	actual	computation	...	31	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 8	

Figure	22:	Energy	and	runtime	demand	of	actual	computation	on	48	nodes	31	
Figure	23:	EDP	of	actual	computation	on	48	nodes	...	32	
Figure	24:	Energy	demand	of	halo	exchange	..	32	
Figure	25:	Energy	and	runtime	demand	of	halo	exchange	on	48	nodes	33	
Figure	26:	EDP	of	halo	exchange	on	48	nodes	...	33	
Figure	27:	Energy	demand	of	I/O	with	XML	strategy	...	34	
Figure	28:	Runtime	demand	of	I/O	with	XML	strategy	..	34	
Figure	29:	Energy	and	runtime	demand	of	I/O	with	XML	strategy	on	48	nodes	..	35	
Figure	30:	EDP	of	I/O	with	XML	strategy	on	48	nodes...	35	
Figure	31:	Energy	demand	of	I/O	with	HDF5	strategy	..	36	
Figure	32:	Runtime	demand	of	I/O	with	HDF5	strategy	...	36	
Figure	33:	Energy	and	runtime	demand	of	I/O	with	HDF5	strategy	on	48	nodes

	...	37	
Figure	34:	EDP	of	I/O	with	HDF5	strategy	on	48	nodes	..	37	
Figure	35:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	diagonal	pre-

conditioner.	..	40	
Figure	36:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	full-linear	pre-

conditioner.	..	40	
Figure	37:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	 low-energy	

pre-conditioner.	...	41	
Figure	38:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	full-linear	low-

energy	pre-conditioner.	...	41	
Figure	39:	Power	profile	over	time	for	the	Aorta	test	case	using	the	diagonal	pre-

conditioner.	..	42	
Figure	40:	Power	profile	over	time	for	the	Aorta	test	case	using	the	full-linear	pre-

conditioner.	..	43	
Figure	41:	Power	profile	over	time	for	the	Aorta	test	case	using	the	low-energy	

pre-conditioner.	...	43	
Figure	42:	Power	profile	over	time	for	the	Aorta	test	case	using	the	full-linear	low-

energy	pre-conditioner.	...	44	
	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 9	

3 Table	of	Acronyms	
	
Acronym	 Definition	
AMG	 Algebraic	Multi-grid	
AMR	 Adaptive	Mesh	Refinement	
ATX	 Advanced	Technology	eXtended	
BL	 Baseline	
CFD	 Computational	Fluid	Dynamics	
CPU	 Central	Processor	Unit	
D	 Deliverable	
DNS	 Direct	Numerical	Simulation	
DRAM	 Dynamic	Random	Access	Memory	
DVFS	 Dynamic	Voltage	Frequency	Scaling	
EDP	 Energy-Delay	Product	
GS	 Gather-Scatter	
HDF5	 Hierarchical	Data	Format	version	5	
I/O	(IO)	 Input/Output	
MMS	 Method	of	Manufactured	Solutions	
MPI	 Message	Passing	Interface	
NetCDF	 Net	Common	Data	Format	
SEM	 Spectral	Element	Method	
SSD	 Solid	State	Disk	
UPC	 Unified	Parallel	C	
WP	 Work-package	
XML	 Extensible	Mark-up	Language	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 10	

4 Introduction	
	
This	deliverable	reports	on	work	performed	in	work-package	2	in	the	first	half	of	
the	ExaFLOW	project.	The	focus	of	this	work-package	(WP)	is	different	to	that	of	
WP1.	Whereas	WP1	focuses	on	the	derivation	of	new	algorithms	which	can	scale	
to	the	size	expected	of	future	exascale	machines,	the	motivation	for	the	work	in	
this	WP	is	to	make	the	implementations	of	those	algorithms	efficient	in	order	to	
give	the	most	efficient	use	of	new	machines.	
	
As	part	 of	 the	 overall	 efficiency	package,	we	 considered	 code	 implementations	
such	as:	changing	programming	model;	using	libraries	rather	than	hand-crafted	
code	 and	 generated	 code;	 system	 aspects	 such	 as	 CPU	 frequency	 control	 and	
choice	of	algorithm	to	minimise	energy	and	runtime;	and	reducing	data	volumes	
to	ease	IO	bottlenecks.	
	
The	remainder	of	this	deliverable	is	as	follows:	

• In	Section	5	we	report	on	efficient	implementations	of	algorithms	in	the	co-
design	applications	and	support	libraries,	including	code-generation	as	an	
alternative	to	traditionally	written	code.	

• In	Section	5.4	we	report	on	work	to	measure,	analyse	and	understand	the	
energy	consumption	of	the	co-design	applications,	with	a	view	to	reducing	
the	 consumption	 both	 via	 code	 optimisation	 and	 adjustment	 of	 system	
features.	

• In	Section	7	we	report	on	implementation	of	the	algorithms	researched	in	
WP1	relating	to	data	compression	and	I/O	reduction	improvements.	

• Finally,	in	Section	8	we	conclude	with	pointers	to	future	work	to	be	carried	
out	in	the	second	half	of	the	project.	

	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 11	

5 Implementation	of	algorithms	in	co-design	applications	
	
In	this	section	we	examine	different	 implementations	of	CFD	algorithms,	which	
may	offer	solutions	to	the	problem	of	scaling	current	codes	and	problems	to	a	size	
which	would	make	efficient	use	of	an	exascale	machine.	
	
In	Section	5.1	we	examine	the	code	generation	aspects	of	OpenSBLI	as	a	solution	
to	writing	code	that	will	make	efficient	use	of	a	particular	architecture.	In	Section	
5.2	we	examine	work	done	to	implement	h-type	Adaptive	Mesh	Refinement	(AMR)	
in	Nek5000,	 including	 the	required	pre-conditioners	 to	support	 this.	 In	Section	
5.2.3	we	examine	work	on	Algebraic	Multi-grid	methods	and	finally,	in	Section	5.3	
we	report	on	initial	work	to	improve	the	underlying	communication	library	used	
by	both	Nektar++	and	Nek5000	to	allow	for	improved	scaling.	
	

5.1 Code	generation	for	CFD	
Version	1.0.0	of	the	OpenSBLI	code	has	been	released	on	GitHub	under	the	GNU	
General	Public	License	[6].	This	comprises	code	generation	techniques	that	allow	
users	 to	write	 the	equations	 they	wish	 to	solve	as	high-level	expressions	 -	 	 the	
model	code	that	performs	the	finite	difference	approximations	is	then	generated	
automatically.	 This	 helps	 to	 future-proof	 models	 as	 new	 exascale-capable	
architectures	 become	 available.	 It	 also	 introduces	 a	 separation	 of	 concerns	
between	 domain	 specialists,	 numerical	 modellers,	 and	 HPC	 experts,	 allowing	
better	maintainability	and	extensibility	of	the	codebase.	
	
Verification	and	validation	of	OpenSBLI	has	been	accomplished	through	a	suite	of	
test	 cases,	 such	 as	 the	 Taylor-Green	 vortex	 problem.	 In	 this	 problem,	 vortex	
stretching	and	turbulence	are	simulated	by	solving	the	3D	compressible	Navier-
Stokes	equations	on	approximately	16	million	grid	points.	A	visualization	of	the	
results	is	shown	in	Figure	1.	
	

	

The	 numerical	 results	 from	 OpenSBLI	 with	 respect	 to	 enstrophy	 and	 kinetic	
energy	agree	very	well	with	existing	DNS	data,	as	shown	in	Figure	2.	

Figure	 1:	 Visualisation	 of	 the	 solution	 to	 the	 Taylor-Green	 vortex	
problem	in	3D.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 12	

	

	

The	method	of	manufactured	solutions	(MMS)	has	also	been	used	to	highlight	the	
flexibility	 of	 OpenSBLI	 and	 its	 code	 generation	 techniques,	 by	 running	 a	
convergence	analysis	with	finite	difference	schemes	of	various	orders	simply	by	
changing	 a	 single	 parameter	 in	 the	 problem	 specification/setup	 file.	 The	
generation	of	the	code	that	implements	the	finite	differencing	scheme	of	arbitrary	
order	n	is	generated	automatically.	The	results	in	Figure	3	show	convergence	of	
the	 solution	 field	 'phi'	 for	 schemes	 of	 order	 2	 up	 to	 12,	 thereby	 verifying	 the	
correctness	of	the	code:	
	

	
Figure	3:	Convergence	of	the	solution	field	'phi'	for	schemes	of	order	2	up	to	12.	

Further	details	on	OpenSBLI	can	be	found	in	a	journal	article	recently	published	
by	Jacobs	et	al	[7].	
	

Figure	2:	Comparison	of	enstrophy	and	kinetic	energy	results	from	
OpenSBLI	to	other	DNS	data.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 13	

OpenSBLI	 and	 its	 dependencies	 have	 been	 successfully	 installed	 on	 both	 the	
ARCHER	 (UEDIN)	 and	 Hazel	 Hen	 (USTUTT)	 supercomputing	 facilities	 in	
preparation	 for	 performance	 analysis	 and	 large-scale	 Use	 Case	 runs	 for	 WP3.	
OpenSBLI	scales	well	both	strongly	and	weakly	up	to	tens	of	thousands	of	cores	
on	ARCHER,	as	reported	in	another	recently-accepted	journal	article	[8].	
	
The	development	and	evaluation	of	five	different	finite	difference	algorithms	has	
also	 taken	 place	 in	 OpenSBLI.	 These	 are	 characterized	 by	 varying	 degrees	 of	
computational	and	memory	intensiveness	brought	about	by	storing	derivatives	in	
memory	vs.	re-computing	them	on	the	device.	Recent	work	has	focused	on	their	
evaluation	 on	multicore	 CPUs,	 and	 it	 has	 been	 shown	 that	 by	 storing	 the	 first	
derivatives	of	the	velocity	components	as	thread/process-local	variables	(rather	
than	 as	 global	 work	 arrays	 over	 the	whole	 grid)	 a	 speed-up	 of	 ~2	 relative	 to	
traditional	 CFD	 algorithms	 (in	which	 all	 field	 values	 are	 stored	 in	 global	work	
arrays)	can	be	attained,	as	shown	in	Figure	4.	
	

	
Figure	4:	The	total	run-time	(left)	and	normalised	speed-up	of	5	different	finite	difference	algorithms	
in	 the	 context	 of	 a	 Taylor-Green	 vortex	 simulation.	 The	 Baseline	 (BL)	 algorithm	which	 stores	 all	
derivatives	in	global	work	arrays	is	the	worst	algorithm	in	t	terms	of	run-time,	while	the	Store	Some	
(SS)	 algorithm	 which	 stores	 the	 first	 derivatives	 of	 velocity	 components	 as	 thread/process-local	
variables	is	the	fastest	algorithm.	

Progress	 has	 also	 been	 made	 on	 integrating	 the	 error	 indicators	 for	 finite	
difference	methods	 into	 the	OpenSBLI	 code,	 and	we	are	aiming	 to	present	 this	
work	at	the	ParCFD	2017	conference.	
	

5.2 Adaptive	Mesh	Refinement	
Here	we	describe	 the	 code	developments	 closely	 related	 to	 the	WP1	 task	 (1.1)	
concerning	 grid	 adaptivity.	 The	 goal	 is	 to	 introduce	 the	 h-type	 Adaptive	Mesh	
Refinement	 (AMR)	 framework	 in	 CFD	 solvers	 based	 on	 the	 Spectral	 Element	
Method	(SEM).	The	presented	work	was	done	with	the	Nek5000	code	and	consists	
of	the	development	of	different	AMR	framework	components:	

• reimplementation	of	the	tools	for	grid	management;	
• implementation	 of	 the	 pressure	 pre-conditioner	 for	 nonconforming	

meshes;		
• algebraic	multi-grid	solvers.	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 14	

5.2.1 Grid	management	
The	 most	 fundamental	 operations	 of	 AMR	 on	 parallel	 computers	 are	 grid	
modification	and	partitioning.	In	context	of	SEM,	in	which	discretisation	is	based	
on	a	decomposition	of	a	computational	domain	into	a	number	of	non-overlapping,	
high-order	 sub-domains	 called	 elements,	 these	 operations	 mean	 changing	 the	
polynomial	order	 in	particular	 element	 (p-refinement)	or	 splitting	 the	element	
into	 the	 smaller	 one	 (h-refinement),	 and	 deriving	 a	 proper	 element-to-process	
mapping.	
	
The	work	on	h-type	AMR	 framework	 for	Nek5000	code	was	 started	within	EU	
project	 CRESTA,	 where	 these	 basic	 tasks	 were	 implemented	 using	 existing	
external	 libraries.	As	h-refinement	modifies	element	connectivity,	a	special	grid	
manager	is	required	to	perform	local	refinement/coarsening	and	to	build	globally	
consistent	 mesh.	 For	 this	 task	 the	 p4est	 library	 [1]	 has	 been	 chosen,	 as	 it	 is	
designed	 to	 manipulate	 domains	 composed	 of	 the	 multiple,	 non-overlapping	
logical	cubic	subdomains,	which	can	be	represented	by	a	recursive	tree	structure.	
For	grid	partitioning	ParMETIS	[2]	was	used.	It	adapts	a	variety	of	algorithms	for	
partitioning	and	repartitioning	of	unstructured	graphs,	however	within	CRESTA	
only	 the	 repartitioning	 from	 scratch	 strategy	 was	 extensively	 studied.	 It	
guarantees	 the	 best	 mesh	 decomposition,	 but	 is	 the	 most	 computationally	
intensive.	The	more	detailed	description	of	implementation	and	scaling	tests	can	
be	found	in	[3]	and	in	this	document	we	will	focus	only	on	modifications	done	as	
part	of	ExaFLOW.	
	
The	first	important	change	is	the	upgrade	of	p4est	from	version	0.3.4	to	1.1,	as	the	
new	version	offers	a	significantly	improved	interface.	However,	this	forced	us	to	
change	a	number	of	key	routines	developed	within	CRESTA,	so	we	finally	decided	
to	 re-implement	 the	whole	 code.	One	of	 the	 crucial	modifications	 concerns	 the	
global	numbering	of	degrees	of	 freedom.	The	old	 implementation	relied	 in	 this	
case	 on	p4est	 numbering,	which	was	 inconsistent	with	Nek5000	 standard	 and	
made	it	difficult	to	combine	h-	and	p-type	refinement.	In	the	new	implementation	
we	perform	global	ordering	of	vertices,	edges,	faces	and	elements	that	are	later	
used	to	evaluate	global	node	numbering.	This	method	is	much	more	flexible	and	
closer	 to	 Nek5000	 standard.	 Other	 important	 improvements	 are	 cleaner	
algorithms;	 giving	 a	 framework	 to	 develop	 p-refinement	 techniques	 for	 future	
developments	 in	WP1;	allowing	more	control	over	 the	coarsening	process;	and	
additional	 tests	 performed	 after	 p4est	 refinement	 phase.	 These	 tests	 avoid	
potentially	costly	solver	restarts	in	situations	where	they	are	not	needed.	In	the	
case	 of	 ParMetis,	 we	 focused	 on	 this	 library’s	 native	 adaptive	 repartitioning	
strategy	 combining	 diffusive	 and	 remapping	 schemes.	 Unlike	 the	 partitioning	
from	 scratch	 strategy,	 this	 is	 a	 trade-off	 between	 the	 quality	 of	 mesh	
decomposition	and	the	computational	time,	and	has	to	be	taken	into	account,	as	
the	partitioning	from	scratch	was	found	to	be	the	most	important	bottleneck	in	
the	context	of	the	code	strong	scaling.	
	
We	have	also	upgraded	our	nonconforming	version	of	Nek5000	solver,	moving	
from	old	SVN	revision	1050	and	adapting	to	the	new	code	development	workflow	
on	GitHub.	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 15	

5.2.2 Implementation	of	the	pressure	pre-conditioner	for	nonconforming	meshes	
The	AMR	framework	implemented	into	Nek5000	during	CRESTA	supported	only	
the	advection-diffusion	equation.	One	of	the	main	goals	of	ExaFLOW	is	to	extend	
this	 implementation	 to	 the	 full	 nonlinear	 Navier-Stokes	 equations	 for	
incompressible	flows.	In	this	case,	one	has	to	perform	costly	pressure	calculations	
which	require	efficient	pre-conditioners	 for	nonconforming	meshes	to	 limit	 the	
number	of	iterations.	To	support	all	Nek5000	features,	we	upgraded	both	steady	
and	time	dependent	solvers.	
	
First	we	implemented	the	nonconforming	version	of	the	pressure	pre-conditioner	
for	steady	state	calculations.	It	uses	Uzawa	decoupling	with	the	full	inverse	of	the	
Helmholtz	operator	evaluated	by	nested	velocity	 iterations.	Following	previous	
development	 (Paul	 Fischer;	 private	 communication)	 we	 modified	 routines	
responsible	for	action	of	the	inverse	mass	matrix	operator	and	those	enforcing	the	
solution	continuity	across	element	boundaries.	As	most	calculation	is	performed	
on	velocity	mesh,	no	modification	to	the	gather-scatter	operator	was	necessary.	
This	 implementation	was	tested	with	the	Kovasznay	flow	[4]	which	 is	 the	two-
dimensional	flow-field	behind	a	periodic	array	of	cylinders.	It	is	a	perfect	test	case	
as	it	provides	an	analytical	solution	that	allows	for	calculation	of	the	exact	error	
of	the	numerical	solver.	The	error	of	the	stream-wise	velocity	component	for	the	
unrefined	 and	 refined	 simulations	 is	 presented	 in	 Figure	 5	 and	 Figure	 6	
respectively	 showing	 the	 error	 reduction	 by	 two	 orders	 of	 magnitude	 for	 the	
refined	grid.	

	
Figure	5:	The	error	of	the	stream-wise	velocity	component	for	the	conforming	mesh.	Black	lines	show	
element	boundaries.	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 16	

	
Figure	6:	The	error	of	the	stream-wise	velocity	component	for	the	nonconforming	mesh.	Black	lines	
show	element	boundaries.	

	
Next	we	upgraded	the	pressure	pre-conditioner	for	time	dependent	flows	based	
on	 the	 additive	 overlapping	 Schwarz	 method	 (further	 discussed	 in	 Section	
5.2.3.4).	 This	 pre-conditioner	 together	with	 necessary	 algorithm	modifications	
and	performed	test	cases	are	extensively	discussed	in	the	WP1	deliverable	1.1,	so	
we	 will	 focus	 here	 on	 the	 major	 code	 changes	 only.	 The	 most	 significant	
modifications	 are	 related	 to	 redefinition	 of	 both	 the	 restriction/prolongation	
operators	for	the	local	problem	and	the	coarse	base	functions	used	for	assembly	
of	the	coarse	grid	operator.		
	
The	coarse	base	functions	have	to	be	adjusted	to	remove	the	hanging	nodes	from	
consideration,	which	makes	 functions	shape	dependent	on	 the	configuration	of	
the	 refined	 region.	 As	 not	 all	 of	 the	 possible	 patterns	 can	 be	 represented	 as	 a	
simple	tensor-product,	we	define	and	store	all	necessary	components	of	the	base	
functions	 (5	 in	2D	and	15	 in	3D)	at	 the	 initialisation	step,	and	after	each	mesh	
refinement	step	we	perform	proper	assembly	of	the	functions	taking	into	account	
relative	position	of	children	faces	with	respect	to	their	parents	and	other	elements	
in	the	neighbourhood.	Finally,	the	coarse	grid	operator	is	formed	and	the	coarse	
grid	solver	is	restarted.	An	example	shape	of	the	coarse	base	function	is	presented	
in	Figure	7.	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 17	

	
Figure	 7:	 Exemplary	 shape	 of	 the	 coarse	 base	 functions	 for	 the	 nonconforming	 mesh.	 Element	
boundaries	are	marked	by	black	lines.	

	

	
Figure	 8:	 Iteration	 count	 of	 the	 pressure	 solver	 as	 a	 function	 of	 time	 step	 for	 conforming	 and	
nonconforming	setups	of	3D	lid	driven	cavity.	The	nonconforming	setup	uses	two	different	definitions	
of	the	local	child-to-parent	mapping	operator:		J-1	and		JT.	

For	simplicity,	the	restriction/prolongation	operators	for	local	problems	are	built	
using	the	gather-scatter	communicator	for	the	velocity	mesh	with	the	proper	node	
mapping,	 exchanged	 interpolation	 operator	 and	 without	 edge	 interpolation	
performed.	 The	 analogy	 with	 the	 velocity	 mesh	 operator	 was	 used	 as	 well	 to	
construct	 local	 interpolation	 operators,	 so	 the	 child-to-parent	 mapping	 was	
performed	 by	 a	 transpose	 of	 the	 parent-to-child	 mapping	 matrix	 J.	 This	
implementation	 was	 tested	 with	 a	 lid-driven	 cavity	 setup,	 showing	 similar	
convergence	rate	of	the	conforming	and	nonconforming	solvers	for	2D	simulation	
and	significant	increase	of	pressure	iterations	for	the	nonconforming	solver	in	3D	
case.	Further	investigation	showed	the	definition	of	the	child-to-parent	mapping	
to	be	responsible	for	the	reduced	convergence	rate,	and	a	new	operator	closer	to	
J-1	rather	than	JT	was	proposed	and	implemented.	The	new	operator	was	found	to	
be	 superior	 to	 JT,	 reducing	 the	 number	 of	 pressure	 iterations	 for	 the	
nonconforming	solver	to	the	level	of	conforming	solver,	as	can	be	seen	in	Figure	
8.	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 18	

Combining	 all	 implemented	 tools,	 we	 were	 able	 to	 perform	 the	 full	 AMR	
simulation	of	the	2D	backward-facing	step	with	the	Reynolds	number	𝑅𝑒 = 450.	
For	this	simulation	we	used	spectral	error	indicator	developed	by	C.	Mavriplis	[5]	
with	the	refinement	and	de-refinement	criteria	set	to	10-4	and	10-6	respectively.	
The	simulation	started	with	the	smallest	possible	resolution	mesh	and	zero	initial	
condition,	 and	 was	 allowed	 to	 evolve	 freely	 for	 20000	 steps	 with	 the	 mesh	
refinement	performed	every	100	steps.	The	restriction	on	the	CFL	condition	was	
set	to	0.3	and	the	simulation	was	run	on	4	processors.	The	initial	(before	the	first	
refinement	took	place	at	100	steps)	and	final	mesh	structures	together	with	the	
error	indicator	and	the	stream-wise	velocity	component	are	presented	in	Figure	
9,	 Figure	 10,	 Figure	 11	 and	 Figure	 12.	 In	 all	 plots	 the	 element	 boundaries	 are	
marked	by	black	lines.	
	

	
Figure	9:	Initial	stream-wise	velocity	component	for	the	backward-facing	step	simulation.	

	
Figure	10:	Initial	error	estimator	for	the	backward-facing	step	simulation.	

	
Figure	11:	Final	stream-wise	velocity	component	for	the	backward-facing	step	simulation.	

	
Figure	12:	Final	error	estimator	for	the	backward-facing	step	simulation.	

As	can	be	seen,	there	were	three	refinement	levels	added	during	the	simulation,	
reducing	the	maximum	value	of	error	indicator	25	times	and	confining	the	error	
to	 the	 proximity	 of	 the	 sharp	 step	 edge.	 At	 the	 same	 time	 the	 total	 number	 of	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 19	

elements	raised	from	72	to	246.	The	overall	cost	of	mesh	adaptivity	with	199	calls	
to	error	indicator	and	the	mesh	being	regenerated	135	times	is	negligible	(1.12	
sec)	compared	to	the	total	simulation	runtime	(186.5	sec)	proving	AMR	to	be	very	
efficient	for	small	test	cases	run	on	small	(4)	number	of	cores.	However,	for	the	
big	number	of	cores	the	communication	intensive	restart	of	the	coarse	grid	solver	
can	set	a	constraint	on	Nek5000	scalability.	This	can	be	an	additional	limitation	as	
results	of	CRESTA	showed	the	grid	partitioning	performed	by	ParMETIS	to	be	a	
major	bottleneck	at	the	strong	scaling	limit	(1	element	per	core).	That	is	why	we	
currently	consider	different	strategies	for	both	grid	partitioning	and	coarse	grid	
solver	setup.	Some	of	these	issues	are	addressed	in	the	next	paragraph.	
	
	

	
Figure	 13:	 Number	 of	 velocity	 iteration	 as	 a	 function	 of	 time	 step	 for	 the	 backward-facing	 step	
simulation.	

	
Figure	 14:	 Number	 of	 pressure	 iterations	 as	 a	 function	 of	 time	 step	 for	 the	 backward-facing	 step	
simulation.	To	make	plot	readable	we	presented	first	2000	time	steps	only.	

The	last	aspect	to	be	investigated	was	the	influence	of	 	mesh	refinement	on	the	
solver	iteration	count,	as	this	should	be	considered	as	an	additional	cost	of	AMR	
that	 is	 not	 included	 in	 timing	 of	 the	 mesh	 regeneration	 routines.	 Figure	 14	
presents	the	number	of	iterations	for	the	velocity	solver	as	a	function	of	time	step,	
and	shows	almost	no	influence	of	the	mesh	refinement	on	solver	performance.	On	
the	 other	 hand,	 the	 pressure	 solver	 shows	 strong	 variations	 in	 the	 number	 of	
iterations		every	time	the	mesh	is	regenerated,	as	can	be	seen	in	Figure	13.	The	
iteration	count	rises	rapidly	from	about	15	to	45	and	then	drops	back	within	a	few	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 20	

time	steps.	This	behaviour	is	identical	to	the	initialisation	phase	of	the	conforming	
solver,	and	its	source	is	not	fully	clear	yet.	
	

5.2.3 AMG	Pre-conditioners	
The	major	 source	of	 stiffness	when	 solving	 the	Navier-Stokes	equations	 comes	
from	the	pressure	equation,	which	requires	an	efficient	preconditioning	strategy.	
The	method	 chosen	 for	 Nek5000	 is	 called	 additive	 Schwarz	 [12]	 and	 the	 pre-
conditioner	can	be	expressed	as:	

𝑀0
−1 = 𝑅0𝑇𝐴0−1𝑅0 + 𝑅𝑘𝑇𝐴𝑘−1𝑅𝑘

𝐾

𝑘=1
	

where	 K	 is	 the	 number	 of	 spectral	 elements	 and	 Rk	 and	 R0	 are	 restrictions	
operators.	This	pre-conditioner	can	be	seen	as	the	sum	of	the	global	coarse	grid	
operator	(subscript	0)	and	local	subdomain	operators	(subscript	k).	The	present	
report	focuses	on	the	solution	of	the	coarse	grid	operator,	A0,	which	is	the	finite	
element	 Laplace	 operator	 with	 linear	 base	 functions,	 built	 on	 the	 elements'	
vertices	 (independently	 on	 the	 polynomial	 order	 and	 inner	 points	within	 each	
element).	Two	methods	are	available	in	Nek5000	to	solve	this	problem.	The	first	
one	is	a	sparse	basis	projection	method,	called	XXT	[14].	The	second	method	uses	
an	 algebraic	 multigrid	 method	 (AMG),	 which	 is	 more	 efficient	 for	 massively	
parallel	(P	>	1e4)	large	simulations	(K	>	1e5)	[11].	
	
The	convergence	rate	of	iterative	solvers	usually	stalls	after	a	certain	number	of	
iterations	because	of	 the	slow	decay	of	 low	 frequency	errors.	Multigrid	solvers	
tackle	 this	 issue	 by	 transferring	 the	 problem	 to	 a	 coarser	 grid,	 where	 low	
frequency	errors	will	be	damped	more	rapidly.	This	step	 is	applied	recursively	
until	the	problem	is	sufficiently	small	to	be	solved	directly.	Two	main	multigrid	
methods	 exist:	 the	 geometric	 multigrid	 and	 the	 algebraic	 multigrid.	 The	 first	
method	 builds	 a	 geometrically	 explicit	 coarser	 grid,	 while	 the	 latter	 builds	 a	
coarser	algebraic	operator.	The	AMG	implemented	in	Nek5000	is	divided	into	two	
parts:	a	setup	and	a	solver.	In	the	following	section,	we	describe	the	algorithms	for	
the	AMG	setup	and	solver.	We	also	present	the	implementation	of	an	alternative	
and	faster	way	to	perform	the	setup,	which	does	not	modify	the	solver	part.	In	the	
deliverables	 for	 WP3,	 a	 comparison	 of	 the	 results	 with	 both	 methods	 will	 be	
presented.	
	
The	current	AMG	setup	is	performed	by	an	external,	serial	MATLAB	code	and	can	
be	decomposed	into	three	main	steps:	coarsening	of	the	operator	A0,	computation	
of	the	interpolation	operators	between	the	various	levels,	and	computation	of	a	
smoother	on	each	level.	The	operator	A0	should	be	first	written	out	to	binary	files	
by	 running	 Nek5000	with	 proper	 pre-processing	 flags.	 The	 setup	 needs	 to	 be	
performed	once	per	computational	grid	and	does	not	depend	on	the	polynomial	
order	of	the	spectral	elements.	
	

5.2.3.1 AMG	Coarsening	
Given	an	initial	operator	A,	of	dimension	n	x	n,	the	coarsening	operation	defines	a	
hierarchy	of	coarse	operators.	One	requirement	for	the	present	AMG	setup	is	to	
have	a	1	x	1	(i.e.	a	scalar)	operator	at	the	coarsest	level.	At	each	level,	the	coarse	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 21	

grid	 simply	 refers	 to	a	 subset	of	 the	original	unknowns,	 called	C-variables.	The	
remaining	 unknowns	 are	 termed	 F-variables.	 In	 the	 case	 of	 the	 AMG	 setup,	 a	
variable	is	associated	to	a	vertex	of	the	domain	and	to	a	given	line	of	the	operator.	
The	 partitioning	 between	 the	 C-	 and	 F-variables	 is	 done	 using	 the	 Ostrowski	
coarsening	with	norm	bound.	The	algorithm	 is	explained	 in	details	 in	[13]	 and	
presented	in	algorithm	1	shown	in	Figure	15	(also	taken	from	[13]).	1	is	a	vector	
of	all	ones	and	ei	is	the	i-th	coordinate	vector.	
	

	
Figure	15:	Ostrowski	coarsening	with	norm	bound.	

At	the	end	of	the	coarsening,	the	initial	operator	A	is	divided	into	4	operators	such	
that:	

𝐴 =
𝐴// 𝐴/0
𝐴0/ 𝐴00

	

where	Aff	=	A(F,	F),	Afc	=	A(F,	C),	Acf	=	A(C,	F),	Acc	=	A(C,	C),	and	where	we	have	
assumed	 that	 the	 coarse	 variables	 are	 ordered	 last.	 The	 coarsening	 algorithm	
ensures	that:	

𝐼 − 𝐷𝑓
−1/2𝐴𝑓𝑓𝐷𝑓

−1/2
2
> 𝜌	

where	 Df	 =	 diag(Aff)	 and	 ρ	 is	 an	 imposed	 tolerance.	 Algorithm	 1	 is	 applied	
recursively	until	only	one	variable	is	left	in	C.	
	

5.2.3.2 Interpolation	
The	computation	of	the	interpolation	operator	is	rather	complex	and	details	can	
be	found	in	[5].	Let	us	just	note	that	the	computation	of	the	interpolation	operator	
can	be	divided	into	two	main	parts:	
	

• Compute	interpolation	weights,	
• Compute	interpolation	support.	

The	 interpolation	 produces,	 for	 each	 level,	 an	 operator	 W	 such	 that	 the	
interpolation	matrix:	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 22	

𝑃 = 𝑊
𝐼 	

allows	to	restrict	an	array	x	to	its	coarse	and	fine	subparts	xf	=	x(F)	and	xc	=	x(C)	
as:	

𝑥 =
𝑥/
𝑥0 ≈ 𝑃𝑥0 =

𝑊𝑥0
𝐼𝑥0

	

5.2.3.3 Smoother	
The	smoother	 chosen	 is	a	parameter-free	diagonal	 sparse	approximate	 inverse	
(SPAI-0)	[13].	The	smoothing	operator	Dff	(denoted	D	because	diagonal)	if	given	
by:	

𝐷𝑓𝑓 𝑖𝑖
= 𝐴𝑓𝑓 𝑖𝑖

/ 𝐴𝑓𝑓𝑒𝑖𝑖 2
2	

where	 𝐴𝑓𝑓𝑒𝑖𝑖 2
2	is	simply	the	sum	of	the	squares	of	the	elements	of	the	i-th	column	

of	 Aff.	 This	 smoother	 is	 optimal	 in	 a	 certain	 Frobenius	 norm.	 The	 smoothing	
strategy	in	the	solver	is	a	Chebyshev	iteration	method.	The	associated	number	of	
iterations,	denoted	m,	as	well	as	the	associated	contraction	factor,	denoted	𝜌𝑐ℎ𝑒𝑏𝑠,	
are	also	computed	during	the	setup	phase.	
	

5.2.3.4 AMG	Solver	
Given	the	data	produced	by	the	setup	phase,	the	coarse	grid	problem	is	solved,	in	
parallel,	in	Nek5000	at	each	time	iteration.	The	AMG	solver	performs	a	single	V	-
cycle.	The	corresponding	algorithm	is	given	in	algorithm	2	shown	in	Figure	16.	
	

	
Figure	16:	AMG	solver.	

The	inputs	to	the	function	are	b,	the	right	hand	side,	and	x,	an	initial	guess	to	the	
solution.	The	different	matrices	and	the	parameters	m	and	𝜌𝑐ℎ𝑒𝑏𝑠	appearing	in	the	
algorithm	are	the	ones	computed	during	the	setup	phase	and	are	identified	at	each	
level	by	the	subscript	l.	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 23	

5.2.3.5 Hypre	library	as	an	alternative	to	MATLAB	
Using	MATLAB	for	performing	the	setup	procedure	has	several	disadvantages:	

• A	MATLAB	licence	is	required,	
• There	is	no	way	to	integrate	the	setup	inside	Nek5000,	
• The	code	can	be	fairly	slow	(up	to	several	hours/day	for	largest	cases),	
• It	cannot	be	parallelized.	

In	order	to	tackle	these	issues,	we	propose	to	use	Hypre	[10],	a	library	for	linear	
algebra,	 as	 an	 alternative	 to	 perform	 the	 main	 part	 of	 the	 setup.	 The	 chosen	
approach	 is	 to	 use	 Hypre	 for	 performing	 the	 coarsening	 and	 interpolation	
operations	instead	of	MATLAB	(meaning	that	algorithms	will	differ)	but	to	keep	
the	same	smoother.	This	way,	Hypre	takes	care	of	the	time	consuming	coarsening	
and	interpolation	parts	and	we	do	not	need	to	modify	the	AMG	solver	in	Nek5000.	
Hypre	offers	several	choices	for	the	coarsening	method	[9]:	
	

• CLJP,	
• Ruge-Stueben,	
• Falgout,	
• PMIS,	
• HMIS,	
• CGC.	

In	practice,	the	MATLAB	code	is	replaced	by	a	C	code	calling	the	Hypre	routine	for	
the	AMG	setup.	The	information	about	the	coarsening	and	interpolation	is	then	
used	to	compute	the	exact	same	smoothers	at	each	level	as	with	MATLAB.	Then,	
setup	data	is	written	out	in	binary	files	using	the	same	formalism.	The	use	of	Hypre	
has	been	tested	in	serial	only	and	significant	improvement	in	setup	time	has	been	
achieved	while	similar	performance	for	the	AMG	solver	was	kept,	as	we	will	show	
in	WP3.	The	setup	 in	Hypre	can	also	be	parallelized	but	 this	 requires	a	proper	
matrix	partition	among	processes	and	it	has	not	been	tested	yet.	

5.3 ExaGS	library	
	
Gather-scatter	operations	are	one	of	the	most	important	communication	kernels	
in	Nek5000	for	fetching	data	dependencies	(gather),	and	spreading	back	results	
(scatter).	The	current	implementation	in	Nek5000	is	based	on	the	Gather-Scatter	
library,	GS,	which	utilizes	three	different	strategies:	pairwise	nearest	neighbour	
communication;	the	Crystal	router,	which	aggregates	smaller	messages	and	route	
them	around	the	network	in	a	hypercube	like	pattern;	and	finally,	collective	all-to-
all	communication.	Implemented	using	non-blocking	two-sided	message	passing,	
the	library	has	proven	to	scale	well	to	hundreds	of	thousands	of	cores.	
	
However,	the	necessity	to	match	sending	and	receiving	messages	in	the	two-sided	
communication	 abstraction	 can	 quickly	 increase	 latency	 and	 synchronisation	
costs	 for	 very	 fine	 grained	 parallelism,	 in	 particular,	 for	 the	 unstructured	
communication	patterns	created	by	unstructured	problems.		
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 24	

We	have	therefore	started	to	develop	ExaGS,	a	reimplementation	of	the	Gather-
Scatter	library,	with	the	intent	to	use	the	best	suitable	programming	model	for	a	
given	 architecture.	 Following	 the	 promising	 results	 from	 the	 EPiGRAM	project	
[15],	we	have	chosen	to	write	a	first	implementation	of	ExaGS	using	the	one-sided	
programming	model	provided	by	 the	Partitioned	Global	Address	 Space	 (PGAS)	
abstraction,	using	Unified	Parallel	C	(UPC).	
	
There	are	two	major	issues	for	an	efficient	UPC	implementation.	First	an	efficient	
shared	data	structure	is	needed,	which	allows	for	different	sized	memory	blocks	
on	 each	 thread,	 with	 easy	 access	 from	 any	 thread.	 Traditionally,	 distributed	
shared	memory	models	have	allocated	shared	memory	across	threads	in	an	equal,	
fixed	 block	 size.	 To	 solve	 this	 problem,	we	 have	 used	 the	 directory	 of	 objects	
approach,	where	each	thread	defines	its	own	shared	memory	region,	which	can	
grow	 and	 shrink	 independently	 of	 each	 other.	 Each	 region	 can	 be	 accessed	 by	
going	 through	 a	 directory,	 consisting	 of	 shared	 pointers	 to	 each	 region.	 The	
downside	of	this	approach	is	that	all	library	functionalities	provided	by	UPC,	e.g.	
collective	operations,	have	to	be	re-implemented	to	suit	our	data	structure.	

	

	
Figure	17:	An	illustration	of	the	directory	of	object	data	structure	on	four	threads.	

The	second	issue	is	to	derive	efficient	point-to-point	synchronization	primitives	
in	 UPC,	 necessary	 for	 nearest-neighbour	 communication.	 For	 this	 we	 have	
implemented	 two	 different	 strategies.	 First,	 by	 protecting	 each	 transfer	with	 a	
locking	mechanism,	and	secondly	by	a	shared	variable,	using	a	strict	access	policy,	
acting	as	a	semaphore.	Both	approaches	have	their	pros	and	cons.		
	
A	lock	is	standard	and	provided	natively	by	UPC,	but	requires	at	least	two	locks	to	
protect	 both	 send	 and	 receive	 buffers,	 thus	 the	 communication	 becomes	 very	
similar	 to	 the	 two-sided	model,	with	an	explicit	 synchronization	point	 for	both	
send	 and	 receive	 operations.	 With	 a	 shared	 semaphore,	 a	 less	 restrictive	
communication	 abstraction	 can	 be	 chosen,	 where	 the	 semaphores	 implicitly	
enforce	synchronization	by	protecting	the	shared	memory	buffers.	This	way,	the	
communication	 pattern	 becomes	 very	 similar	 to	 multithreaded	 programming.	
However,	care	should	be	taken	to	avoid	deadlocks,	race	conditions	and	network	
contention	when	polling	the	remote	memory	locations.		
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 25	

By	 utilizing	 both	 the	 shared	 data	 structure	 and	 both	 of	 our	 point-to-point	
synchronization	 schemes,	 we	 have	 successfully	 rewritten	 both	 the	 collective	
communication	parts	of	the	Gather-Scatter	library	as	well	as	all	three	(two	for	the	
semaphore)	of	the	gather-scatter	routines	communication	strategies.	
	
To	test	our	new	communication	kernel,	we	have	developed	Nekbarebone,	a	new	
version	 of	 Nek5000’s	 co-design	 application	 Nekbone,	 for	 which	 different	
communication	back-ends	can	be	used.	 In	order	 to	assess	 the	 feasibility	of	our	
approach,	we	ran	a	weak	scalability	test	of	the	crystal	router’s	ping-pong	test	in	
Nekbarebone,	using	both	the	original	MPI	and	our	new	lock-free	UPC	algorithms	
in	ExaGS.	The	results	in	Figure	18,	are	promising,	in	particular	at	scale,	and	clearly	
demonstrates	the	feasibility	of	our	approach.		
	
	

	
Figure	18:	Weak	scalability	test	of	the	crystal	router	gather-scatter	operation	inside	Nekbarebone,	
using	128	elements	per	core,	with	a	polynomial	order	of	ten,	running	on	the	Cray	XC40	Beskow.	

5.4 Hybridizable	DG	
The	motivation	 for	 the	 CG-DG	 solver	 was	 to	 bring	 together	 the	 advantages	 of	
discontinuous	(DG)	and	continuous	Galerkin	(CG)	methods	in	one	hybrid	scheme.	
The	 approach	 consisted	 of	 replacing	 each	 element	 in	 HDG	 (hybridizable	
discontinuous	Galerkin)	method	by	a	group	of	elements	discretized	by	CG	(which	
would	correspond	to	one	mesh	partition	in	parallel	setting).	We	expected	such	a	
solver	to	be	efficient	in	terms	of:	
	

• communication:	 HDG	 only	 requires	 pairwise	 communication	 between	
partitions	 regardless	 of	mesh	 topology.	 The	 amount	 of	 data	 transferred	
between	cluster	nodes	would	therefore	be	lower	than	in	classical	DG	and	
collective	broadcast	and	reduce	operations	would	be	limited.	

• computation/work:	HDG	 is	more	 efficient	 than	 classical	DG	because	 the	
global	system	 involves	only	hybrid	unknowns	 located	on	element	 traces	
(between	 partitions	 in	 our	 case).	 The	 remaining	 (element-interior)	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 26	

degrees	of	freedom	are	then	reconstructed	from	hybrid	variable	and	this	
step	is	fully	parallel.	

	
The	HDG	algorithm	consists	of	two	major	steps:	
	

1. Assembly	and	solution	of	global	system	for	hybrid	variable.	The	rank	of	this	
system	is	comparable	to	statically	condensed	CG	system.	

2. Reconstruction	 of	 remaining	 unknowns	 from	 given	 values	 defined	 on	
element	traces.	

	
When	replacing	each	finite	element	in	HDG	by	a	group	of	CG	elements,	we	were	
aware	that	the	second	step	(partition-wise	reconstruction	of	unknown	degrees	of	
freedom)	would	involve	a	solution	of	a	dense	system	with	rank	proportional	to	
the	number	of	unknowns	in	each	partition.	We	hoped	to	exploit	the	known	block	
structure	of	this	matrix	to	keep	the	cost	in	step	2)	comparable	to	classical	CG	solve	
in	one	partition.	The	reduced	communication	would	then	still	ensure	 favorable	
scaling	and	wall	clock	times.	
	
When	doing	the	cost	analysis	of	the	CG-DG	algorithm,	however,	we	found	out	that	
the	assembly	and	solution	of	 the	global	 system	 for	hybrid	variable	 (i.e.	 step	1)	
incurs	significantly	 larger	asymptotic	cost	when	each	partition	 is	regarded	as	a	
macro-element	instead	of	a	series	of	classical	finite	elements.	The	technical	details	
regarding	this	have	been	reported	in	deliverable	1.2.	
	
This	 additional	 cost	 means	 that	 the	 CG-DG	 solver	 has	 limited	 potential	 to	 be	
competitive	with	CG	or	DG	in	terms	of	efficiency,	even	though	its	formulation	is	
mathematically	 sound	 and	 implementation	 possible.	We	 have	 not	 attempted	 a	
concrete	quantitative	comparison	with	CG	and	DG	which	would	consider	other	
factors	beyond	the	scope	of	the	performance	model	such	as	memory	bandwidth	
and	latency,	but	based	on	former	experience	with	the	implementation	and	timings	
of	both	CG	and	 'classical'	HDG	 in	Nektar++,	we	conclude	 that	 the	CG-DG	solver	
would	not	yield	smaller	run	times.	
	
The	application	of	the	CG-DG	solver	on	a	mesh	with	a	single	partition	amounts	to	
the	solution	of	a	CG	system	with	Dirichlet	boundary	conditions	prescribed	by	the	
hybrid	variable	(weakly).	This	part	of	the	algorithm	was	implemented	and	we	plan	
to	use	it	in	challenging	test	cases	with	complex	flow	physics.	On	the	other	hand,	
we	do	not	intend	to	implement	the	remaining	step	in	the	CG-DG	solver	and	would	
rather	invest	our	resources	in	other	areas	that	fall	in	the	ExaFlow	remit	and	which	
we	currently	regard	as	more	promising	than	the	CG-DG	algorithm.	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 27	

6 Energy	efficiency	
In	this	section,	we	examine	different	methods	for	investigating	and	understanding	
energy	consumption	of	our	target	co-design	applications	with	the	eventual	goal	of	
reducing	energy	to	solution	without	harming	temporal	performance.	
	
As	 there	 are	 no	 exascale	 machines	 we	 can	 study,	 there	 is	 some	 necessary	
speculation	 about	 architectures	 and	 how	 they	 might	 relate	 to	 current	
architectures	which	can	be	studied.	In	Section	6.1,	a	comparison	is	made	of	energy	
to	 solution	 and	 power	 consumption	 for	 a	 node	 based	 on	 a	 current	 Intel	 Xeon	
processor	and	one	based	on	an	Intel	Xeon	Phi	processor.	In	Section	6.2,	a	study	is	
performed	 examining	 the	 effects	 of	 varying	 clock	 frequency	 on	 each	 phase	 of	
execution	of	a	CFD	code,	using	one	of	the	test-cases	from	WP3.	Finally,	in	Section	
6.3,	the	effect	of	changing	pre-conditioner	on	both	energy	to	solution	and	power	
consumption	 are	 examined	 using	 a	 high-accuracy	 high-speed	 measurement	
system	able	to	gather	data	on	system	components	other	than	CPUs.	

6.1 Energy	efficiency	of	generated	codes	
In	addition	to	the	runtime	analysis	performed	on	the	five	different	finite	difference	
algorithms,	SOTON	has	evaluated	the	five	algorithms	in	terms	of	energy	efficiency	
on	multicore	CPUs	and	Intel	Xeon	Phi	KNL	processors.	The	Taylor-Green	vortex	
problem	presented	earlier	was	used	for	this	purpose,	and	was	run	in	parallel	for	
500	time-steps	on	(a)	1	ARCHER	CPU	node	(24	CPU	cores)	using	MPI	and	(b)	64	
cores	on	an	Intel	Xeon	Phi	KNL	processor,	again	using	MPI.	The	PAT	MPI	library	
[16]	reads	the	hardware	counters	to	obtain	power	and	energy	consumption	data.	
Some	preliminary	results	from	a	single	simulation	are	shown	in	Figure	19	&	Figure	
20.	
	

	

Figure	19:	Cumulative	energy	 (left)	 and	 power	 consumption	 (right)	over	500	 iterations	of	 a	Taylor-Green	vortex	
simulation	when	run	in	parallel	over	24	MPI	processes	on	a	single	24-core	ARCHER	node.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 28	

	
	

	
Interestingly,	 the	 Baseline	 (BL)	 algorithm,	 which	 stores	 finite	 difference	
derivatives	 in	global	work	arrays	over	 the	whole	grid,	 is	once	again	 the	worst-
performing	algorithm	both	in	terms	of	runtime	and	energy	usage.	This	suggests	
that	a	 large	amount	of	 time	and	energy	are	required	to	deal	with	the	relatively	
high	memory-intensity	of	the	BL	algorithm.	In	contrast,	the	Store	None	(SN)	and	
Store	Some	(SS)	algorithms	(which	are	more	computationally-intensive	yet	 less	
memory-intensive)	 are	 the	 fastest	 and	 most	 energy	 efficient	 across	 the	 two	
architectures.	Furthermore,	the	new	KNL	processor	uses	less	than	half	as	much	
energy	across	all	the	algorithms	as	a	result	of	the	faster	runtimes	and	lower	power	
consumption.	 Preparing	 codes	 for	 such	 novel	 architectures	 and	 continuing	 to	
evaluate	different	algorithms	with	energy	in	mind	will	therefore	be	advantageous,	
especially	 where	 energy	 budgets	 are	 a	 factor	 when	 submitting	 jobs	 to	 a	
supercomputing	service.	This	work	has	been	submitted	as	another	ParCFD	2017	
conference	abstract[17].	

6.2 Clock	frequency	adaption	
Since	 numerical	 applications	 typically	 comprise	 different	 phases	 in	 each	 time-
stepping	iteration	(e.g.	the	actual	computation,	I/O,	etc.),	the	CPU	might	not	be	the	
bottleneck	 in	 all	 of	 these	 phases.	 The	 CPU’s	 clock	 frequency	 might	 hence	 be	
adapted	in	order	to	reduce	the	energy	demand	if	the	respective	hardware	allows	
for	this.	Furthermore,	one	may	ask	“what	is	the	optimal	degree	of	parallelism	if	
assessing	this	question	from	the	energy	point	of	view?”	Moreover,	different	I/O	
formats	and	strategies	(e.g.	large	number	of	rather	small	XML	files	vs.	a	few	rather	
large	HDF5	 files)	may	have	 an	 impact	 on	 an	 applications	 energy	 footprint.	We	
hence	 decided	 to	 address	 these	 questions	 in	 an	 appropriate	 measurement	
framework.	
	
Since	 we	 are	 interested	 in	 the	 energy	 consumption	 of	 real	 world	 problems,	
ExaFLOW’s	 industrial	automotive	use	case	has	been	used	for	this	purpose	with	
Nektar++.	The	questions	mentioned	above	have	been	addressed	by	varying:	

Figure	 20:	 Cumulative	 energy	 (left)	 and	 power	 consumption	 (right)	 over	 500	 iterations	 of	 a	 Taylor-Green	 vortex	
simulation	when	run	in	parallel	over	64	MPI	processes	on	a	single	Intel	Xeon	Phi	KNL	processor.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 29	

• CPU	clock	frequency	(entire	available	range	as	well	as	(non-trivial)	DVFS	
governors),	fixed	frequency	used	within	entire	run	

• number	of	used	nodes	 in	a	 strong	scaling	 fashion	 (3	nodes	 to	48	nodes,	
minimum	 determined	 by	 memory	 demand	 of	 the	 use	 case,	 maximum	
determined	by	Nyquist–Shannon	theorem)	

• I/O	strategy	and	format	(XML	vs.	HDF5,	cf.	above)	
	
By	 deploying	 Cray's	 power	monitoring	 features,	 we	 can	 query	 the	 aggregated	
energy	consumption	of	entire	nodes	at	a	frequency	of	10Hz	from	within	the	time-
stepping	 loop	 in	 Nektar++	 for	 the	 three	 most	 dominant	 phases	 (actual	
computation,	halo	exchange	and	I/O)	of	an	iteration,	which	allows	distinguishing	
between	different	phases	and	time-stepping	iterations.	After	every	odd	iteration,	
a	checkpoint	is	written	to	achieve	a	significant	size	of	the	sample	set.	
	
It	is	easiest	to	consider	the	performance	by	splitting	the	results	into	three	distinct	
phases:	
	

6.2.1 Actual	computation	
Figure	 21	 shows	 the	 energy	 demand	 of	 this	 phase	 for	 different	 amounts	 of	
parallelism,	this	is	the	total	energy	consumed	by	the	nodes	but	does	not	include	
energy	used	by	any	interconnect,	for	which	data	is	unavailable	on	this	platform.	
The	depicted	values	are	the	sum	over	95	iterations	(the	first	five	iterations	have	
been	dropped	since	 they	do	 further	 resource-intensive	setup	 tasks).	Obviously,	
deploying	as	much	parallelism	(in	terms	of	node	count)	as	possible	is	optimal	from	
the	energy	point	of	view	(at	least	within	the	examined	range).	Figure	22	depicts	
the	energy	as	well	as	runtime	demand	of	 this	setting	 in	detail.	Fortunately,	 the	
energy	 demand	 drops	 faster	 when	 compared	 to	 the	 increase	 of	 runtime.	 The	
energy-delay-product	(EDP),	which	is	a	widely-used	measure	to	assess	energy	vs.	
runtime	trade-offs,	is	shown	in	Figure	23.	EDP	is	simply	the	product	of	energy	and	
runtime	an	optimal	can	be	found	by	minimising	this	metric.	From	this,	it	seems	
running	at	1.7GHz	is	optimal	per	EDP.	Doing	so	reduces	the	energy	demand	by	
19.2%	compared	to	the	default	setting	of	2.5GHz	while	increasing	the	runtime	by	
12.6%.	If	compared	to	turbo	mode	(depicted	as	3300000	kHz),	energy	savings	of	
34%	are	possible	while	increasing	the	runtime	by	20%.	
	

6.2.2 Halo	exchange	
Figure	 24	 shows	 the	 energy	 demand	 of	 this	 phase	 for	 different	 amounts	 of	
parallelism.	Again,	the	depicted	values	are	the	sum	over	95	iterations	(cf.	above).	
Using	a	maximal	amount	of	parallelism	is	shown	to	be	the	best	choice	here.	Hence,	
Figure	 25	 depicts	 the	 energy	 as	 well	 as	 runtime	 demand	 of	 this	 setting.	
Unfortunately,	the	decreasing	energy	demand	is	contrasted	now	by	a	more	severe	
increase	 in	 runtime,	 so	 that	 the	 EDP	 minimum	 is	 achieved	 by	 the	 governor	
“conservative”	[18]	per	Figure	26,	whose	value	is	close	to	those	of	the	CPU’s	base	
clock	frequency	of	2.5GHz.	We	even	suppose	that	the	delta	is	within	the	margin	of	
error.	The	CPU	governor	is	a	mechanism	which	determines	how	aggressively	the	
CPU	 changes	 frequency	 based	 on	 computational	 demand	 As	 a	 comparison,	 all	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 30	

figures	also	include	results	from	letting	the	governor	dictate	CPU	frequency	rather	
than	fixing	it	for	each	simulation.	
	
The	relative	amount	of	time	and	energy	spent	in	the	actual	computation	and	halo	
exchange	 phases	 points	 to	 a	 substantial	 load	 imbalance.	 Furthermore,	 the	
observed	behaviour	of	the	halo	exchange	does	not	match	with	the	conjectures	one	
may	have,	 i.e.	during	MPI	communication,	 the	energy	efficiency	of	CPUs	should	
benefit	 from	a	 reduced	 clock	 frequency	 as	well	 as	 lower	node	 count.	 It	 is	 thus	
necessary	 to	 further	 investigate	 what	 is	 going	 on	 in	 this	 phase.	 Another	
measurement	approach	may	be	required	here	since	thwarting	a	few	high	loaded	
ranks	in	the	actual	computation	phase	by	decreased	clock	frequency	will	increase	
the	energy	consumption	of	many	waiting	ranks	afterwards.	
	

6.2.3 I/O	
Since	we	 are	 investigating	 XML	 as	 well	 as	 HDF5	 output,	 we	will	 analyse	 each	
separately:	
	
In	contrast	to	the	actual	computation	and	halo	exchange	phases,	I/O	deploying	the	
XML	 strategy	 (cf.	 above)	 exhibits	 the	 best	 energy	 efficiency	 with	 quite	 a	 low	
number	of	nodes	(3	or	6)	per	Figure	27.	This	encourages	an	escrow	I/O	strategy	
with	 idling	 ranks	 set	 to	 an	energy	 saving	 state.	 It	 is	however	 contrasted	by	 an	
increase	in	runtime	if	decreasing	the	amount	of	parallelism,	as	shown	in	Figure	
28,	which	is	due	to	a	significantly	reduced	power	demand	(not	shown	here).	While	
one	would	expect	a	reduced	power	and	energy	demand	in	the	I/O	phase	-	because	
the	I/O	subsystem,	not	the	compute	node,	is	the	bottleneck	here	–	the	considerable	
increase	in	runtime	does	not	entirely	fit	with	expectations.	We	will	thus	have	to	
further	investigate	what	is	happening	here.	Despite	these	considerations,	it’s	not	
reasonable	to	run	on	a	rather	small	number	of	nodes,	since	the	computation	and	
halo	exchange	phases	are	dominant	in	actual	production	runs.	We	hence	use	the	
48-node	case	for	our	considerations	regarding	optimal	clock	frequencies.	As	seen	
in	 Figure	 29,	 the	 energy	 demand	 drops	 slightly	with	 reduced	 clock	 frequency,	
while	 the	 runtime	 rises	 significantly,	 resulting	 in	 an	 optimal	 EDP	 value	 when	
utilizing	the	governor	“ondemand”	(cf.	Figure	30).	
	
If	using	the	I/O	strategy	based	on	HDF5	(cf.	above),	the	results	remain	almost	the	
same	(cf.	Figure	31	to	Figure	34).	The	optimal	amount	of	parallelism	with	respect	
to	runtime,	however,	seems	to	be	12	nodes	here.	In	contrast	to	the	XML	strategy,	
the	optimal	clock	frequency	pertaining	to	EDP	turned	out	to	be	1.7GHz.	It’s	worth	
highlighting	 that	 the	absolute	 level	of	 energy	as	well	 as	 runtime	 is	higher	by	a	
factor	of	about	4	in	this	case	compared	to	XML	output!	We	attribute	this	to	an	–	up	
to	 now	 -	 suboptimal	 implementation	 of	 the	 HDF5	 module.	 This	 is	 because	 it	
triggers	15	independent	reads	(which	hence	needs	to	be	serialized	by	the	MPI-IO	
library)	per	rank	and	checkpoint	which	might	significantly	degrade	the	overall	I/O	
performance.	 This	 issue	 requires	 further	 investigation	 in	 the	 next	months.	We	
expect	an	optimized	HDF5	output	 to	perform	much	better	compared	to	a	 large	
number	of	XML	files.	
	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 31	

	

	
Figure	21:	Energy	demand	of	actual	computation	

	
Figure	22:	Energy	and	runtime	demand	of	actual	computation	on	48	nodes	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 32	

	
Figure	23:	EDP	of	actual	computation	on	48	nodes	

	

	
Figure	24:	Energy	demand	of	halo	exchange	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 33	

	
Figure	25:	Energy	and	runtime	demand	of	halo	exchange	on	48	nodes	

	

	
Figure	26:	EDP	of	halo	exchange	on	48	nodes	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 34	

	
Figure	27:	Energy	demand	of	I/O	with	XML	strategy	

	

	
Figure	28:	Runtime	demand	of	I/O	with	XML	strategy	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 35	

	
Figure	29:	Energy	and	runtime	demand	of	I/O	with	XML	strategy	on	48	nodes	

	

	
Figure	30:	EDP	of	I/O	with	XML	strategy	on	48	nodes	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 36	

	
Figure	31:	Energy	demand	of	I/O	with	HDF5	strategy	

	

	
Figure	32:	Runtime	demand	of	I/O	with	HDF5	strategy	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 37	

	
Figure	33:	Energy	and	runtime	demand	of	I/O	with	HDF5	strategy	on	48	nodes	

	

	
Figure	34:	EDP	of	I/O	with	HDF5	strategy	on	48	nodes	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 38	

	
Overall,	 using	 an	 appropriate	 amount	 of	 parallelism	 (and	 hence	 doing	 the	
calculations	as	 fast	as	possible)	 seems	 to	be	much	more	crucial	with	 respect	 to	
energy	efficiency	than	using	a	proper	clock	frequency.	
	
Although	the	presented	results	are	neither	surprising	nor	immediately	allow	for	
substantial	 energy	 savings,	 we	 have	 a	 framework	 now	 to	 further	 investigate	
interesting	 questions	 related	 to	DVFS	based	 energy	 efficiency	 of	Nektar++	 and	
address	the	issues	identified	above.	
	
If,	after	doing	so,	the	halo	exchange	and	I/O	phases	are	going	to	exhibit	optimal	
clock	 frequencies	which	significantly	differ	 from	that	of	 the	actual	computation	
phase,	 we	 will	 try	 to	 implement	 a	 mechanism	 to	 dynamically	 adapt	 the	 clock	
frequency	 in	 order	 to	 lower	 the	 application's	 energy	 footprint	 while	 (almost)	
preserving	 runtimes.	 Furthermore,	 if	 an	 improved	 load	 balancing	 is	 not	
appropriate	 due	 to	 heavy	 data	 transmission	 demands,	 we	 will	 consider	 "load	
balancing"	by	DVFS	(i.e.	reducing	the	clock	frequency	of	waiting	ranks).	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 39	

6.3 Further	Power	Analysis	
In	this	section,	we	look	at	the	effect	of	changing	pre-conditioner	on	both	the	energy	
to	 solution	 and	 the	power	profile	 for	 a	 single	 test-case,	 that	 of	 blood	 flow	 in	 a	
rabbit	aorta	modelled	using	Nektar++.	This	test-case	is	chosen	as	it	runs	well	on	a	
single-node	system	in	a	reasonable	time-frame.	In	this	section,	the	machine	used	
is	an	instrumented	dual-CPU	Intel	Xeon	system	based	at	UEDIN.	Each	power	line	
is	sampled	at	a	rate	of	500	kHz	using	custom	hardware	developed	by	the	Adept	
Project	 to	 allow	 for	 a	 high	 fidelity	 of	measurement	 and	 greater	 accuracy	 than	
available	on	the	supercomputers	used	in	other	sections.	
	

6.3.1 Energy	to	Solution	
Figure	 35,	 Figure	 36,	 Figure	 37	&	 Figure	 38	 show	 the	 energy	 consumption	 by	
selected	 system	 components	 over	 time	 for	 the	 test-case	 when	 different	 pre-
conditioners	are	used.	They	are,	respectively:	diagonal,	full-linear,	low-energy	and	
a	combination	of	full-linear	and	low-energy.	In	each	figure,	the	dashed	line	shows	
the	sum	of	CPU,	DRAM	and	SSD	energy.	
	
Choice	of	pre-conditioner	has	marked	effect	on	runtime.	Low-energy	results	in	the	
quickest	solution	at	58s,	followed	by	full-linear	and	low-energy	at	230s,	followed	
by	diagonal	at	375s	and	finally	full-linear	which	did	not	complete	after	1000s	and	
was	aborted.	
	
Two	trends	are	evident	in	the	graphs:	

• DRAM	and	SSD	energy	is	dwarfed	by	CPU	energy	and	consequently	these	
are	poor	targets	for	initial	energy	reduction	efforts,	and;	

• ATX	energy,	the	energy	drawn	by	components	other	than	the	CPU,	DRAM	
and	 SSD	 is	 high	 for	 this	 system.	 Reducing	 this	 energy	 by	 switching	
computation	 to	 another	 system	 with	 a	 lower	 power	 draw	 for	 inactive	
components	would	result	in	a	fast	energy	saving.	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 40	

	
Figure	35:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	diagonal	pre-conditioner.	

	
Figure	36:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	full-linear	pre-conditioner.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 41	

	
Figure	37:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	low-energy	pre-conditioner.	

	
Figure	38:	Energy	usage	over	time	for	the	Aorta	test	case	using	the	full-linear	low-energy	pre-
conditioner.	

	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 42	

6.3.2 Power	profiles	
For	a	more	complete	understanding	of	the	energy	consumption,	it	is	possible	to	
look	at	the	point-in-time	power	consumption	over	the	run-time	of	the	test-case.	
Figure	39,	Figure	40,	Figure	41	and	Figure	42	show	the	power	profile	of	the	four	
pre-conditioners.	What	is	most	evident	from	these	figures,	as	compared	to	the	
energy	consumption	figures,	is:	

• there	are	two	distinct	phases	of	CPU	activity,	a	low-power	phase	in	which	
the	power	consumption	sits	at	a	little	over	50W	and	a	high-power	phase	
in	which	the	power	consumption	rises	to	close	to	70W,	and;	

• the	DRAM	power	phase	matches	that	of	the	CPU	fairly	well	in	all	cases.	
	
It	would	not	be	unreasonable	then,	as	a	next	step,	to	attempt	to	determine	the	
computational	activity	in	both	phases	and	see	if	energy	savings	can	be	made	by	
either	reducing	the	run-time	of	the	high-power	phase	or	operating	more	in	the	
low-power	phase,	even	if	it	increases	run-time,	with	the	restriction	that	it	should	
save	energy	overall.	
	

	
Figure	39:	Power	profile	over	time	for	the	Aorta	test	case	using	the	diagonal	pre-conditioner.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 43	

	
Figure	40:	Power	profile	over	time	for	the	Aorta	test	case	using	the	full-linear	pre-conditioner.	

	
Figure	41:	Power	profile	over	time	for	the	Aorta	test	case	using	the	low-energy	pre-conditioner.	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 44	

	
Figure	42:	Power	profile	over	time	for	the	Aorta	test	case	using	the	full-linear	low-energy	pre-
conditioner.	

	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 45	

7 Data	Management	&	IO	
Exascale	 computing	 will	 serve	 for	 very	 large	 capability	 jobs	 as	 well	 as	 for	
workflows	with	many	instances	of	large-scale	simulations.	Implied,	in	any	case,	is	
an	extremely	large	I/O	consumption	for	reading	and	writing	data	as	well	as	for	
storing	these	on	a	 large-scale	 filesystem.	This	applies	 in	particular	to	 fluid-flow	
simulations.	However,	data	 I/O	 is	 an	emerging	bottleneck	 in	high	performance	
computing	(irrespective	of	application/discipline)	because	of	diverging	hardware	
speed-ups	between	computation	and	I/O.	This	will	remain	true	even	with	new	I/O	
technologies	like	burst	buffers.	Also,	non-volatile	memory	will	only	gradually	help.	
To	reduce	the	amount	of	data	for	storage	and	handling	we	propose	two	solution	
paths:	 parallelization	 of	 I/O,	 and	 I/O	 data	 reduction	 and	 compression	 via	
application-dependent	 filtering.	 The	 main	 objective	 of	 both	 is	 alleviation	 of	
performance	bottlenecks	caused	by	data	transfer	from	memory	to	disk.	
	
So	 far,	we	 have	 focused	 on	 the	 development	 of	 the	 data-reduction	 algorithms,	
which	are	reported	in	the	WP1	deliverable.	In	order	to	investigate	parallelization	
of	 I/O,	 some	small	 test	 cases	were	carried	out	with	 the	high-level	 I/O	 libraries	
NetCDF	(Network	Common	Data	Format)	and	HDF5	(Hierarchical	Data	Format)	
on	a	Cray	XC40	(Hazel	Hen)	at	HLRS.	Here	we	give	a	short	introduction	to	the	I/O	
libraries.	
	
NetCDF	 is	 developed	 at	 the	 Unidata	 Program	 Center	 (UPC)	 and	 provides	
applications	with	 a	 common	 data	 access	method	 for	 the	 storage	 of	 structured	
datasets.	 The	 original	 NetCDF	 API	 was	 designed	 for	 serial	 data	 access	 and	
insufficient	 parallel	 performance.	 Parallel	 netCDF	 (PnetCDF)	 is	 developed	 by	
Northwestern	University	 and	Argonne	National	 Laboratory	 (ANL)	 to	provide	 a	
parallel	API	to	access	NetCDF	files	with	better	performance.	PnetCDF	is	built	on	
top	of	MPI-IO,	and	allows	users	to	benefit	from	several	optimizations	in	existing	
MPI-IO	implementations.	
	
HDF5	 is	 developed	 at	 the	 National	 Center	 for	 Supercomputing	 Applications	
(NCSA).	 As	 a	 portable	 file	 format	 and	 software,	 HDF5	 could	 store	
multidimensional	arrays	with	ancillary	data	in	a	self-describing	file	format.	HDF5	
supports	parallel	I/O	and	is	designed	for	storing,	retrieving,	analysing	scientific	
data,	etc.	Parallel	access	could	use	MPI-IO	by	setting	the	file	access	property.	
	
JPEG-2000	is	an	image	compression	standard	which	is	typically	utilized	to	store	
natural	and	computer	generated	images	of	any	bit	depth	and	colour	space	(i.e.	16-
bit	grey	scale	images).	The	standard	is	based	on	the	wavelet	transform,	which	is	
typically	 computed	 on	 the	 entire	 dataset.	However,	we	 are	 planning	 to	 exploit	
JPEG-2000’s	capability	of	decomposing	the	dataset	into	so	called	tiles,	which	can	
be	distributed	among	separate	CPUs.	This	tile	based	parallelization	might	impair	
the	 overall	 reconstruction	 quality	 of	 the	 numerical	 dataset	 by	 introducing	 so	
called	block	artefacts,	but	we	hope	that	this	approach	will	drastically	reduce	the	
computational	time	and	speed	up	the	overall	I/O.	
	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 46	

8 Conclusion	and	Future	Work	
In	 this	 deliverable,	 we	 have	 seen	 that	 there	 are	 three	 strands	 to	 efficient	
implementations	 that	 show	promise	 towards	 the	 goal	 of	 future	 efficient	use	of	
exascale	 machines:	 improvements	 to	 algorithm	 implementations;	 methods	 to	
reduce	 energy	 to	 solution	 without	 adversely	 affecting	 computation	 time;	 and	
improvements	 in	 I/O	 allowing	 for	 a	 reduction	 in	 disk	 space	 and	 bandwidth	
required.	
	
As	 this	 deliverable	 is	mid-way	 through	 the	 project,	 there	 are	 number	 areas	 of	
future	work	for	the	partners	involved	in	this	deliverable:	
	

• Other	key	features	required	for	the	simulation	of	the	compressible	NACA-
4412	 use-case,	 such	 as	 characteristic	 and	 wall	 boundary	 conditions,	
support	for	generalised	coordinates,	and	multi-block	capabilities.	

• The	evaluation	of	the	performance	of	the	various	algorithms	discussed	in	
[17]	on	other	architectures	such	as	GPUs.	

• Extending	the	nonconforming	solver	to	support	curved	external	element	
boundaries.	 In	 this	 case	 we	 have	 used	 Gordon-Hall	 transformation	 to	
properly	shift	elements	internal	degrees	of	freedom	according	to	the	face	
deformation.	

• Concurrently,	 re-implementing	 the	 hybrid	 multigrid-Schwarz	 pre-
conditioner	for	nonconforming	meshes.	

• The	Hypre	 code,	mainly	 on	parallelisation,	 therefore	 reducing	 the	 setup	
time	further.	In	a	second	phase,	the	setup	might	be	integrated	directly	in	
Nek5000	and	be	performed	online.	A	complete	integration	would	enable	
the	use	of	the	AMG	solver	in	the	framework	of	adaptive	mesh	refinement.	

• Exploration	of	data	analysis	strategies,	which	are	developed	in	WP1,	will	
be	implemented	ExaFLOW’s	use	cases	to	analyse	parallel	I/O.	

• Further	additions	to	the	HDF5	support	in	Nektar++	to	reduce	time	taken	in	
checkpoint/restart	operations.	

	
	
	 	

D2.2	–Initial	report	on	the	ExaFLOW	algorithms,	energy	efficiency	&	IO	strategies.	 47	

9 Bibliography	
1. p4est	http://www.p4est.org/	
2. ParMETIS	

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview/	
3. Peplinski,	A.,	Fischer,	P.	F.,	Schlatter,	P.	Parallel	Performance	of	H-type	

Adaptive	Mesh	Refinement	for	Nek5000,	in	Proceedings	of	the	Exascale	
Applications	and	Software	Conference	2016,	Stockholm,	Sweden	

4. Kovasznay,	L.	Laminar	flow	behind	a	two-dimensional	grid,	Proc.	Cambr.	
Philos.	Soc.	44,	58–62,	1948	

5. Mavriplis,	C.	A	Posteriori	Error	Estimators	for	Adaptive	Spectral	Element	
Techniques,	in	Proceedings	of	the	Eighth	GAMM-Conference	on	Numerical	
Methods	in	Fluid	Mechanics,	333–342.	Vieweg+Teubner	Verlag,	
Wiesbaden,	1990	

6. OpenSBLI	https://github.com/opensbli/opensbli	
7. Jacobs	et	al.	The	Journal	of	Computational	Science:	

https://dx.doi.org/10.1016/j.jocs.2016.11.001	
8. Jammy	et	al.	(In	Press),	http://dx.doi.org/10.1016/j.jocs.2016.10.015	
9. Hypre	user's	manual.	
10. Hypre	2.11.1.	http://computation.llnl.gov/projects/hypre-scalable-linear-

solvers-multigrid-methods/software.	
11. P	Fischer,	J	Lottes,	D	Pointer,	and	A	Siegel.	Petascale	algorithms	for	

reactor	hydrody-namics.	Journal	of	Physics:	Conference	Series,	
125(1):012076,	2008.	

12. P.F.	Fischer.	An	overlapping	Schwarz	method	for	spectral	element	
solution	of	the	incompressible	Navier-Stokes	equations.	J.	of	Comp.	Phys.,	
1997.	

13. James	William	Lottes.	Towards	Robust	Algebraic	Multigrid	Methods	for	
Nonsymmetric	Problems.	PhD	thesis,	University	of	Oxford,	2015.	

14. H.M	Tufo	and	P.F	Fischer.	Fast	parallel	direct	solvers	for	coarse	grid	
problems.	Journal	of	Parallel	and	Distributed	Computing,	61(2):151	{	177,	
2001.	

15. Ivanov,	I.,	Gong,	J.,	Akhmetova,	D.,	Peng,	I.	B.,	Markidis,	S.,	Laure,	E.,	…	
Fischer,	P.	(2015).	Evaluation	of	parallel	communication	models	in	
Nekbone,	a	Nek5000	mini-application.	Proceedings	-	IEEE	International	
Conference	on	Cluster	Computing,	ICCC,	2015–Octob,	760–767.	

16. PAT	MPI	library	https://github.com/cresta-eu/pat_mpi_lib	
17. S.	P.	Jammy,	C.	T.	Jacobs,	D.	J.	Lusher,	N.	D.	Sandham	(Submitted).	Energy	

efficiency	of	finite	difference	algorithms	on	multicore	CPUs	and	Intel	Xeon	
Phi	processors,	ParCFD	2017	Extended	Abstracts.	

18. https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt	
	

